Usted está aquí: Inicio web asignaturas

 

Fichas de asignaturas 2010-11


Cálculo

Asignaturas
 

  Código Nombre    
Asignatura 21715002 Cálculo Créditos Teóricos 3,75
Título 21715 GRADO EN INGENIERIA INDUSTRIAL (CADIZ) Créditos Prácticos 3,75
Curso   1 Tipo Obligatoria
Créd. ECTS   6    
Departamento C101 MATEMATICAS    

 

Recomendaciones

Tener los conocimientos impartidos en la asignatura MATEMÁTICAS II de
bachillerato. También se recomienda tener un hábito de estudio continuado sobre
la asignatura.

 

Profesorado

Nombre Apellido 1 Apellido 2 C.C.E. Coordinador
JOSÉ MANUEL ENRIQUEZ DE SALAMANCA GARCÍA Profesor Asociado N
LUIS LAFUENTE MOLINERO PROFESOR AYUDANTE DOCTOR S
MARIA DEL CARMEN LISTAN GARCIA PROFESOR SUSTITUTO INTERINO N
FRANCISCO ORTUS ESCUDIER PROFESOR ASOCIADO N

 

Competencias

Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.

Identificador Competencia Tipo
B01 Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización ESPECÍFICA
T01 Capacidad para la resolución de problemas ESPECÍFICA
T04 Capacidad de aplicar los conocimientos en la práctica ESPECÍFICA
T05 Capacidad para trabajar en equipo ESPECÍFICA
T07 Capacidad de análisis y síntesis ESPECÍFICA
T12 Capacidad para el aprendizaje autónomo ESPECÍFICA
T17 Capacidad para el razonamiento crítico ESPECÍFICA

 

Resultados Aprendizaje

Identificador Resultado
R-07 Calcular áreas y volúmenes.
R-03 Comprender la definición de integral doble sobre un rectángulo como una suma de Riemann y su generalización a regiones más generales.
R-06 Derivar e integrar funciones de una y varias variables, y de funciones dadas en forma tabular mediante métodos numéricos.
R-01 Enunciar los teoremas del valor medio.
R-05 Interpretar geométricamente la integral triple como un volumen.
R-02 Obtener extremos relativos, absolutos y condicionados de una función.
R-04 Usar el cambio en el orden de integración.

 

Actividades formativas

Actividad Detalle Horas Grupo Competencias a desarrollar
01. Teoría
MODALIDAD ORGANIZATIVA: Clases teóricas
MÉTODO DE ENSEÑANZA APRENDIZAJE: Método
expositivo. Lección magistral

En estas clases el profesor presenta los
contenidos básicos correspondientes a las
unidades temáticas seleccionadas. Asimismo, se
resuelven ejercicios que ayuden a afianzar los
conocimientos teóricos y se proponen ejercicios y
problemas para ser resueltos por los alumnos.
30 Grande B01 T01 T04 T05 T12
02. Prácticas, seminarios y problemas
MODALIDAD ORGANIZATIVA: Clases prácticas
MÉTODOS DE ENSEÑANZA- APRENDIZAJE: Resolución de
ejercicios. Aprendizaje basado en problemas.

En estas clases se desarrollan actividades de
aplicación de los conocimientos adquiridos a
problemas concretos que permitan ampliar y
profundizar en dichos conocimientos. Los alumnos
podrán trabajar individualmente o en grupos
pequeños.
15 Mediano B01 T04 T05 T12 T17
03. Prácticas de informática
MODALIDAD ORGANIZATIVA: Prácticas de Informática
MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de
problemas

En estas clases los estudiantes resolverán un
conjunto de problemas utilizando las aplicaciones
informáticas de un programa de cálculo simbólico
y analizarán  los resultados obtenidos.
15 Reducido B01 T01 T07
09. Actividades formativas no presenciales
MODALIDAD ORGANIZATIVA: Estudio y trabajo
individual/autónomo
MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Contrato de
aprendizaje

Estas sesiones contemplan el trabajo realizado
por el alumno para comprender los contenidos
impartidos en clases teóricas, en clases de
problemas y en prácticas con ordenador. Asimismo,
se contempla la búsqueda bibliográfica necesaria
para el mejor estudio.
79 Reducido B01 T05 T07 T17
10. Actividades formativas de tutorías
MODALIDAD ORGANIZATIVA: Tutorías y seminarios

Sesiones dedicadas a orientar al alumno sobre
cómo abordar la resolución de ejercicios y
problemas relativos al desarrollo de la
asignatura.
5 Reducido T01 T04 T05 T07
11. Actividades de evaluación
ACTIVIDADES DE EVALUACIÓN

Sesiones donde se realizan las diferentes pruebas
de progreso periódico.
6 Grande T01 T07 T17

 

Evaluación

Criterios Generales de Evaluación

La calificación general de la asignatura será la suma de las puntuaciones
obtenidas en cada una de las actividades, según su ponderación

 

Procedimiento de Evaluación

Tarea/Actividades Medios, Técnicas e Instrumentos Evaluador/es Competencias a evaluar
Pruebas de conocimientos básicos Prueba objetiva de elección múltiple/Análisis documental
  • Profesor/a
B01 T01 T04
Realización de pruebas de progreso Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura
  • Profesor/a
B01 T01 T04
Realización de una prueba final Prueba escrita compuesta por ejercicios teórico-prácticos y problemas sobre los contenidos de la asignatura.
  • Profesor/a
B01 T01 T04 T07
Trabajo de realización de las pruebas de informática Análisis documental/Rúbrica de valoración de documentos
  • Profesor/a
B01 T01 T04

 

Procedimiento de calificación

Se evaluará tanto la realización de diversas actividades que se propondrán en el
aula, las pruebas de progreso que se realizarán a lo largo del curso, y la
participación activa del alumno mediante la entrega de tareas.

En las pruebas de progreso se valorará la adecuación, claridad, coherencia,
justificación y precisión en las respuestas. Estas pruebas serán usualmente
escritas. Supondrán un 80% de la calificación global de la asignatura.

Las pruebas de conocimientos básicos supondrán un 10% de la calificación global
de la asignatura, y podrán ser propuestas y a realizar en el aula o través del
Campus Virtual.

El trabajo de realización de las prácticas de informática tratará sobre
diferentes ejercicios a resolver con el correspondiente software utilizado, y
supondrá un 10% de la calificación global de la asignatura.

El alumno que no supere una, o más de una, de las pruebas de progreso anteriores,
deberá realizar un examen final que se valorará de la misma forma que las pruebas
de progreso (suponiendo un 80% de la calificación final), siendo la Junta de
Escuela quien establezca la fecha y el lugar de realización.

Se considerará que han adquirido las competencias de la asignatura aquellos
alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas.

 

Descripcion de los Contenidos

Contenido Competencias relacionadas Resultados de aprendizaje relacionados
            TEMA 0.- FUNCIONES DE UNA VARIABLE

Lección 1.- Cálculo diferencial de funciones de una variable

Números reales y complejos.- Definición de función.- Concepto de continuidad y límite.- Cálculo de límites.-
Concepto de derivada.- Interpretación de la derivada.- Cálculo de derivadas.- Teoremas del valor medio.- Regla de
L’Hôpital.- Derivación implícita.

Lección 2.- Cálculo integral de funciones de una variable

Función primitiva.- Cálculo de primitivas.- Problema del área de una región plana.- Integral de Riemann.-
Propiedades de la integral de Riemann.- Teorema del valor medio.- Teorema fundamental del Cálculo y regla de Barrow.-
Aplicaciones de la integral.- Integrales impropias.
        
B01 T01 T05 R-07 R-06 R-01 R-02
            TEMA 1.- SUCESIONES Y SERIES

Sucesiones reales.- Límite de una sucesión.- Conceptos de convergencia y divergencia.- Series reales: de términos
positivos, alternadas y de términos cualesquiera .- Conceptos de convergencia y divergencia.- Series geométricas y
armónica simple.- Criterios de convergencia.- Series de potencias.- Teorema de Taylor.- Series de McLaurin y Taylor.
        
B01 T01 T07 T12
            
TEMA 2.- MÉTODOS NUMÉRICOS

Resolución numérica de ecuaciones.- Interpolación polinómica.- Aproximación de funciones.- Diferenciación e
integración numérica.
        
B01 T01 T04 T12 R-06
            TEMA 3.- CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES

Introducción a funciones de varias variables.- Superficies en el espacio.- Continuidad y límites.- Derivadas
parciales.- Diferenciabilidad.- Regla de la cadena.- Derivadas direccionales.- Derivación implícita.- Optimización
de funciones de varias variables.- Multiplicadores de Lagrange.
        
B01 T01 T12 T17 R-06 R-02
            TEMA 4.- CÁLCULO INTEGRAL DE FUNCIONES DE VARIAS VARIABLES

Integrales iteradas.- Integrales dobles y triples.- Aplicaciones.- Cambio de variables: coordenadas polares,
cilíndricas y esféricas.
        
B01 T01 T04 T12 R-07 R-03 R-06 R-05 R-04

 

Bibliografía

Bibliografía Básica

A. García,  F. García,  A. Gutiérrez, A. López, G.  Rodríguez, A. de la   Villa.
Cálculo I. Ed. Clagsa, 1998.

F. Martínez de la Rosa, C. Vinuesa Sánchez.
Matemáticas. Servicio de Publicaciones de la Universidad de Cádiz, 2003.

R.L. Burden, J. D. Faires. Análisis Numérico. International Thomson Editores, S.A., 2002.

Martínez, F. y Garrido, M.J. ``Matemáticas II". Servicio de Publicaciones. U.C.A. 1998.

A. García, A. López, G. Rodríguez, S. Romero, A. de la Villa.
Cálculo II. Teoría y problemas de funciones de varias variables", Clagsa, 1996.

R. Larson, R. Hostetler, B. Edwards.
Cálculo. Volúmenes I y II. Ed. McGraw-Hill.

V. Tomeo, I. Uña, J. San Martín.
Problemas resueltos de Cálculo en una variable. Ed. Thomson Paraninfo, 2005.

Braulio de Diego. Ejercicios de Análisis. Cálculo Diferencial e Integral. Ed. Deimos.

Ayres-Mendelson. Cálculo diferencial e integral. Ed. McGraw-Hill.

F. Granero. Ejercicios y problemas de Cálculo, Tomos I y II. Ed. Tebar Flores.

A. J. Arriaza Gómez, J. M. Calero Posada, L. Del Águila Garrido, A. Fernández Valles, F. Rambla Barreno,
M. V. Redondo Neble, J. R. Rodríguez Galván. Prácticas de Matemáticas con Maxima. Matemáticas usando Software Libre.

 

 

Bibliografía Ampliación

B. Demidovich. Problemas y ejercicios de análisis matemático.  Ed. Mir o Ed. Paraninfo.

Anti-Demidovich (1, 2, 3 y 4). Matematnka.

D. Kincaid, W. Cheney. Análisis Numérico. Addison-Wesley Iberoamericana, Wilmington 1994.

F. Guillén González, A. Doubova Krasotchenko.  Un Curso de Cálculo Numérico: Interpolación, Aproximación,  Integración y Resolución de Problemas Diferenciales. Sevilla, España. Servicio de Publicaciones Universidad de Sevilla. 2007.

J. A. Sánchez Viña. E. Sánchez Mañes. Ejercicios y complementos de Análisis Matemático I. Tecnos.

 

El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.