Fichas de asignaturas 2011-12
![]() |
ANÁLISIS VECTORIAL |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 40209013 | ANÁLISIS VECTORIAL | Créditos Teóricos | 5 |
Título | 40209 | GRADO EN MATEMÁTICAS | Créditos Prácticos | 2,5 |
Curso | 3 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Pulse aquí si desea visionar el fichero referente al cronograma sobre el número de horas de los estudiantes.
Recomendaciones
Conocimientos y destreza en procedimientos propios de las asignaturas de análisis de funciones de varias variables e integración.
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
MARIA CONCEPCION | MURIEL | PATINO | Profesor Titular Universidad | S |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB1 | Poseer y comprender los conocimientos básicos y matemáticos de los distintos módulos que, partiendo de la base de la educación secundaria general y apoyándose en libros de texto avanzados, se desarrollan en la propuesta de título de Grado en Matemáticas que se presenta. | GENERAL |
CB2 | Saber aplicar esos conocimientos básicos y matemáticos a su trabajo o vocación de una forma profesional y poseer las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de las matemáticas y ámbitos en que se aplican directamente. | GENERAL |
CB3 | Saber reunir e interpretar datos relevantes (normalmente de carácter matemático) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. | GENERAL |
CB4 | Poder transmitir información, ideas, problemas y sus soluciones, de forma escrita u oral, a un público tanto especializado como no especializado. | GENERAL |
CB5 | Haber desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. | GENERAL |
CE1 | Comprender y utilizar el lenguaje matemático. Adquirir la capacidad para enunciar proposiciones en distintos campos de las matemáticas, para Comprender y utilizar el lenguaje matemático. Adquirir la capacidad para enunciar proposiciones en distintos campos de las matemáticas, para construir demostraciones y para transmitir los conocimientos matemáticos adquiridos. | ESPECÍFICA |
CE2 | Conocer demostraciones rigurosas de algunos teoremas clásicos en distintas áreas de las matemáticas. | ESPECÍFICA |
CE3 | Asimilar la definición de un nuevo objeto matemático, en términos de otros ya conocidos y ser capaz de utilizar este objeto en diferentes contextos. | ESPECÍFICA |
CE4 | Saber abstraer las propiedades estructurales (de objetos matemáticos, de la realidad observada y de otros ámbitos) distinguiéndolas de aquellas puramente ocasionales y poder comprobarlas con demostraciones o refutarlas con contraejemplos, así como identificar errores en razonamientos incorrectos. | ESPECÍFICA |
CE5 | Resolver problemas matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos. | ESPECÍFICA |
CE6 | Proponer, analizar, validar e interpretar modelos de situaciones reales sencillas, utilizando las herramientas matemáticas más adecuadas a los fines que se persigan. | ESPECÍFICA |
CE7 | Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, visualización gráfica, optimización u otras para experimentar en matemáticas y resolver problemas | ESPECÍFICA |
CT1 | Utilizar herramientas de búsqueda de recursos bibliográficos. | GENERAL |
Resultados Aprendizaje
Identificador | Resultado |
R4 | Comprender el concepto de variedad orientable y saber orientar utilizando diferentes estrategias |
R5 | Conocer el teorema de Stokes general y sus versiones clásicas. Comprender sus implicaciones en aplicaciones y saber aplicarlo en cada caso particular. |
R1 | Distuinguir recintos que son variedades diferenciales o variedades con pseudoborde de los que no lo son. Saber parametrizar variedades y calcular espacios tangentes. Visualización de recintos. Propiedades fundamentales de estos conjuntos y de aplicaciones entre ellos. |
R2 | Manejo básico de elementos propios del álgebra multilineal,formas diferenciales, campos vectoriales y sus operaciones respectivas. |
r3 | Saber calcular medidas locales de variedades e integrar funciones escalares, campos vectoriales y formas diferenciales en variedades |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
03. Prácticas de informática | Los alumnos dispondrán con antelación de las prácticas de ordenador. En ellas encontrarán todo el material necesario para abordar el estudio de problemas específicos coordinados con el desarrollo de las clases teóricas. Se trata de fomentar la autonomía del alumno para tratar problemas similares y su capacidad de adaptación a situaciones nuevas. |
20 | CE5 CE6 CE7 CT1 | |
08. Teórico-Práctica | En las clases teóricas el profesor expondrá el contenido de los temas, ilustrándolos y motivándolos con ejemplos prácticos. Al principio y al final de cada bloque temático se realizarán seminarios de información, motivación, síntesis y posibles extensiones y aplicaciones futuras de los principales tópicos tratados. Las sesiones de resolución se problemas se intercalan con las teóricas, en función de los contenidos. Se fomentará la participación activa del alumno en el propio desarrollo de las clases (sistema pregunta-respuesta). Al final de cada tema habrá unas sesiones especiales de resolución de problemas por parte del alumno, en las que el profesor supervisa y orienta el trabajo del alumno. Seguidamente se celabrarán sesiones de tutorías grupales en las que el profesor propone soluciones y estrategias para solventar los posibles problemas detectados. |
40 | CB1 CB2 CB3 CE1 CE2 CE3 CE4 | |
09. Actividades formativas no presenciales | Estudio individual o en pequeños grupos de la materia (trabajo autónomo). Actividades académicamente dirigidas de orientación en la resolución de los problemas propuestos en clases de problemas y en las prácticas de ordenador. |
60 | Reducido | CB1 CB2 CB3 CB5 CE1 CT1 |
10. Actividades formativas de tutorías | Tutorías individualizadas y grupales para el seguimiento continuo del aprendizaje del alumno |
15 | Reducido | CB1 CB2 CE3 CE4 CE5 CT1 |
11. Actividades de evaluación | Corrección de los trabajos encomendados por el profesor durante el desarrollo de la asignatura, del examen final y de los problemas derivados de las prácticas de ordenador. |
15 | Reducido | CB1 CB2 CB3 CB4 CB5 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CT1 |
Evaluación
Criterios Generales de Evaluación
El criterio general será el de evaluación continua del alumno, lo que incluye al examen final en su caso. La evaluación e hará por medio de las herramientas señaladas en "Procedimientos de evaluación". La evaluación reflejará el nivel de adquisición de las competencias tanto básicas como específicas y transversales relacionadas anteriormente.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Entrega y/o exposición de trabajos a lo largo del desarrollo de la asignatura | El alumno realizará periódicamente ejercicios escritos que serán corregidos por el profesor y evaluados según la consecución de objetivos específicos de cada tema. Se fomentará la exposición de dichos trabajos de forma oral (competencia CB4) Uso del campus virtual |
|
CB3 CB4 CB5 CE1 CE2 CE5 |
Examen final | Examen escrito con cuestiones teórico-prácticas para evalúar los conocimientos adquiridos por el alumno y calificados según el nivel de adquisición de las competencias propias de la asignatura |
|
CB4 CB5 CE1 CE2 CE3 CE4 CE5 CE6 |
Participación y trabajo realizado en las clases de problemas y en las actividades de tutorización | Observación continuada por parte del profesor de la participación individual de cada alumno en los seminarios, clases de problemas y en las actividades de tutorización, evaluando el aprendizaje progresivo de cada alumno. |
|
CB1 CB2 CB3 CB4 CB5 CE4 |
Prácticas de ordenador | El alumno dispondrá con antelación de las prácticas de ordenador que deberá comprender, saber aplicar y adaptar para resolver otros problemas similares. Se evaluará la corrección de los resultados obtenidos, la destreza en el manejo del ordenador y la exposición de los resultados. Uso del campus virtual. |
|
CE4 CE7 CT1 |
Procedimiento de calificación
La calificación de los trabajos realizados durante el desarrollo de la asignatura y de las prácticas de ordenador podrá suponer hasta un 25% de la calificación final; la evaluación de la participación y del trabajo realizado en los seminarios, clases de problemas y en las actividades de tutorización hasta un 10% y el resto de la calificación estará determinada por la nota del examen final
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
Elementos de álgebra multilineal. Orientación y medida en espacios vectoriales. |
CB1 CB5 CE1 CE2 CE3 CE4 CE5 | R2 |
Formas diferenciales y campos vectoriales.Operaciones. Orientación en variedades. |
CE1 CE2 CE3 CE4 CE5 CE6 CT1 | R4 R2 |
Integración en variedades. Teorema de Stokes. Teoremas clásicos del Análisis Vectorial y aplicaciones. |
CB5 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CT1 | R5 r3 |
Variedades con pseudo-borde. Espacios tangentes. Vector que apunta hacia fuera. Borde e interior de una variedad con pseudo-borde. |
CB1 CB2 CE1 CE2 CE3 CE4 CE5 CE7 CT1 | R1 |
Variedades diferenciales. Espacios tangentes. Aplicaciones entre varieades |
CB1 CE1 CE2 CE3 CE4 CE5 CE7 CT1 | R1 |
Bibliografía
Bibliografía Básica
Análisis Vectorial
Juan Luis Romero Romero
Francisco Benítez
Mª Concepción Muriel
Apuntes de la asignatura disponibles a través del campus virtual
Bibliografía Específica
Cálculo vectorial : definiciones teoremas y resultados
Juan de Burgos Román
Madrid : García-Maroto, 2009
Cálculo vectorial : 95 problemas útiles
Juan de Burgos Román
Madrid : García-Maroto Editores, 2009.
Ejercicios y complementos de análisis matemático III José Antonio Fernández Viña Eva Sánchez Mañes Madrid : Tecnos, c. 1994
Cálculo vectorial
Jerrold Marsden, Anthony, J. Tromba
Publicación Madrid : Addison Wesley Iberoamericana, 2004
Bibliografía Ampliación
Vector analysis
Klaus Jänich ; translated by Leslie Kay.
Publicación New York : Springer, 2001.
Cálculo en variedades Michael Spivak Barcelona: Reverté, D.L. 1987
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.