Usted está aquí: Inicio web asignaturas

 

Fichas de asignaturas 2012-13


AMPLIACIÓN DE MATEMÁTICAS

Asignaturas
 

  Código Nombre    
Asignatura 41415003 AMPLIACIÓN DE MATEMÁTICAS Créditos Teóricos 3,75
Título 41415 GRADO EN INGENIERÍA RADIOELECTRÓNICA Créditos Prácticos 3,75
Curso   2 Tipo Troncal
Créd. ECTS   6    
Departamento C101 MATEMATICAS    

 

Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:

 

Requisitos previos

Estar matriculado en la asignatura.

 

Recomendaciones

Haber aprobado las asignaturas de matemáticas del curso primero.

 

Profesores

Nombre Apellido 1 Apellido 2 C.C.E. Coordinador  
Mª AURORA FERNANDEZ VALLES PROFESOR AYUDANTE DOCTOR N
Jesús Torrens Echeverria S

 

Competencias

Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.

Identificador Competencia Tipo
B1 Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización GENERAL
B3 Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos con aplicación en ingeniería GENERAL
E1 Conocimientos en materias fundamentales y tecnológicas, que le capaciten para el aprendizaje de nuevos métodos y teorías, así como que le doten de una gran versatilidad para adaptarse a nuevas situaciones ESPECÍFICA
E2 Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos habilidades y destrezas ESPECÍFICA

 

Resultados Aprendizaje

Identificador Resultado
R3 Conseguir aprender varios métodos numéricos del Cálculo y del Algebra.
R1 Llegar a dominar la resolución de triángulos esféricos.
R2 Llegar a saber resolver las ecuaciones diferenciales lineales sobre todo con la transformada de Laplace.

 

Actividades formativas

Actividad Detalle Horas Grupo Competencias a desarrollar
01. Teoría
MODALIDAD ORGANIZATIVA: clases teóricas.
MÉTODO EXPOSITIVO: lección magistral.
El profesor expone los contenidos
básicos de los temas, se resuelven
ejercicios que refuercen los
conocimientos teóricos y se proponen
ejercicios y problemas para ser
resueltos por el alumno.
30 B1 E1 E2
02. Prácticas, seminarios y problemas
MODALIDAD ORGANIZATIVA: clases
prácticas. MÉTODO de
ENSEÑANZA-APRENDIZAJE: Resolución de
ejercicios. Aprendizaje basado en
problemas. Los alumnos podrán trabajar
individualmente o en grupitos.
15 B1 E1 E2
03. Prácticas de informática
MODALIDAD ORGANIZATIVA: Prácticas de
informática. MÉTODO de
ENSEÑANZA-APRENDIZAJE: En estas
sesiones se resuelven los ejercicios y
problemas de las prácticas anteriores.
15 B1 B3 E2
10. Actividades formativas no presenciales
MODALIDAD ORGANIZATIVA: Estudio y
trabajo individual. MÉTODO de
ENSEÑANZA-APRENDIZAJE: son sesiones de
trabajo del alumno para comprender los
contenidos impartidos en las clases
teóricas, en las clases de problemas y
en las prácticas de ordenador. El
alumnno tendrá que hacer eventualmente
consultas bibliográficas.
60 B1 E1 E2
11. Actividades formativas de tutorías
MODALIDAD ORGANIZATIVA: Tutorías y
seminarios. Sesiones dedicadas a
orientar al alumno sobre cómo abordar
la resolución de ejercicios y problemas
relativos al desarrollo de la
asignatura.
20 B1 E1 E2
12. Actividades de evaluación
Sesiones donde se realizan las
diferentes pruebas de progreso
periódico del alumno.
10 B1 E1 E2

 

Evaluación

Criterios Generales de Evaluación

La calificación general de la asignatura será la suma de las puntuaciones
obtenidas en cada una de las actividades, según su ponderación.

 

Procedimiento de Evaluación

Tarea/Actividades Medios, Técnicas e Instrumentos Evaluador/es Competencias a evaluar
Prueba final. Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura.
  • Profesor/a
B1 E1 E2
Prueba informática. Trabajo de realización de las pruebas de informática.
  • Profesor/a
B1 B3 E2
Pruebas de progreso. Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura.
  • Profesor/a
B1 E1 E2

 

Procedimiento de calificación

Se evaluarán las pruebas de progreso, usualmente escritas, realizadas a lo largo
del curso, con un 80% de la calificación global de la asignatura. Las pruebas de
conocimientos básicos supondrán un 10% de la nota global y el trabajo de
realización de las prácticas de informática el restante 10%. El alumno que no
supere alguna de las pruebas de progreso anteriores, deberá realizar un examen
final.

 

Descripcion de los Contenidos

Contenido Competencias relacionadas Resultados de aprendizaje relacionados
            TEMA 1. TRIGONOMETRÍA ESFÉRICA. Circunferencias
máximas. Polos. Angulo esférico. Triángulo
esférico. Propiedades de los lados y ángulos de
un triángulo esférico. Coordenadas esféricas:
latitud y longitud. Paso de coordenadas
cartesianas a esféricas. Fórmulas de Bessel del
coseno del lado y del seno. Triángulo esférico
polar: relaciones entre los elementos de un
triángulo y los de su polar. Fórmulas del coseno
del ángulo. Analogías de Neper. Resolución de
triángulos esféricos: 6 casos. Triángulos
esféricos rectángulos. Pentágono de Neper.

        
B1 E1 E2 R1
            TEMA 2. ECUACIONES DIFERENCIALES. Ecuaciones
deferenciales de primer orden (de variables
separables, lineales y de Bernouilli), método de
variación de constantes de Lagrange. Transformada
de Laplace: propiedades, tabla de transformadas.
Ecuaciones diferenciales de orden superior,
lineales y con coeficientes constantes.
Ecuaciones en derivadas parciales.

        
B1 E1 E2 R2
            TEMA 3. MÉTODOS NUMÉRICOS. Método de Newton de
resolución de ecuaciones. Polinomio de
interpolación. Integración numérica: método de
los trapecios, Simpson y Romberg. Resolución
numérica de ecuaciones diferenciales. Métodos
numéricos del álgebra matricial.
        
B1 E1 E2 R3

 

Bibliografía

Bibliografía Básica

 

Mª Asunción Iglesias Martín. Trigonometría esférica. Teoría y problemas resueltos. UPV. Bilbao 2004.

Juan Manuel Nieto Vales. Curso de Trigonometría Esférica. UCA 1996.

Manuel Berrocoso [et al.]. Notas y apuntes de trigonometría esférica y astronomía de posición. UCA 2003.

William E. Boyce, Richard C. DiPrima. Ecuaciones diferenciales y problemas con valores en la frontera. México. Limusa Wiley, 2010.

Robert D. Strum, John R. Ward. Transformada de Laplace; solución de ecuaciones diferenciales. México. F. Trillas 1970.

Richard L. Burden. Análisis Numérico. México. International Thomson,2002.

Claude Brézinski. Introduction à la pratique du calcul numérique. Dunod. Paris, 1988.

 

 

 

El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente.