Fichas de asignaturas 2012-13
![]() |
CÁLCULO |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesores |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 21716001 | CÁLCULO | Créditos Teóricos | 3,75 |
Título | 21716 | GRADO EN INGENIERÍA AEROESPACIAL | Créditos Prácticos | 3,75 |
Curso | 1 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
Requisitos previos
Ninguno.
Recomendaciones
Tener los conocimientos impartidos en la asignatura MATEMÁTICAS II de bachillerato. También se recomienda tener un hábito de estudio continuado sobre la asignatura.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
ALBERTO | FERNANDEZ | ROS | Profesor Asociado | N |
![]() |
LUIS | LAFUENTE | MOLINERO | PROFESOR CONTRATADO DOCTOR | S |
![]() |
FRANCISCO | ORTUS | ESCUDIER | PROFESOR ASOCIADO | N |
![]() |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; Estadística y optimización | ESPECÍFICA |
CB1 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. | GENERAL |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. | GENERAL |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. | GENERAL |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado. | GENERAL |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. | GENERAL |
CT1 | Trabajo en equipo: capacidad de asumir las labores asignadas dentro de un equipo, así como de integrarse en él y trabajar de forma eficiente con el resto de sus integrantes. | GENERAL |
Resultados Aprendizaje
Identificador | Resultado |
R01 | R01. Entender los teoremas de continuidad y derivabilidad de funciones reales de variable real. Aplicar los resultados de dichos teoremas para el análisis de soluciones de ecuaciones no lineales. |
R02 | R02. Derivar e integrar funciones de una y varias variables tanto simbólicamente como mediante métodos numéricos. |
R03 | R03. Calcular áreas y volúmenes |
R03' | R03'. Entender el concepto de integral impropia. Saber aplicar los criterios de convergencia para el análisis de las mismas. |
R04 | R04. Entender el teorema de Taylor. Saber calcular el desarrollo de Taylor de funciones reales de variable real. Aplicar el desarrollo de Taylor para aproximación de funciones, para el estudio local de una función y para el cálculo de límites. |
R05 | R05. Entender el teorema fundamental del Cálculo. Aplicar dicho teorema para el cálculo de derivadas de funciones reales definidas a partir de una integral definida. |
R06 | R06. Entender el concepto de convergencia y divergencia en sucesiones y series de números reales. Saber calcular límites de sucesiones de números reales y utilizar los criterios de convergencia para series de números reales. |
R07 | R07. Obtener extremos relativos, absolutos y condicionados de una función. |
R08 | R08. Entender el concepto de diferenciabilidad de funciones de varias variables. Entender los conceptos de derivadas direccionales y saber calcularlas. Saber calcular el plano tangente de superficies diferenciables. |
R09 | R09. Interpretación geométrica del gradiente de una función de varias variables. |
R10 | R10. Saber utilizar la regla de la cadena para el cálculo de derivadas de funciones de varias variables. Saber calcular las derivadas parciales de funciones definidas implícitamente. |
R11 | R11. Comprender la definición de integral doble sobre un rectángulo como una suma de Riemann y su generalización a regiones más generales. |
R12 | R12. Usar el cambio en el orden de integración. |
R13 | R13. Interpretar geométricamente la integral triple como un volumen. |
R14 | R14. Aplicaciones físicas de las integrales múltiples (centro de masas, momentos de inercia,...). |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: Clases teóricas. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Método expositivo. Lección magistral. En estas clases el profesor presenta los contenidos básicos correspondientes a las unidades temáticas seleccionadas. Asimismo, se resuelven ejercicios que ayuden a afianzar los conocimientos teóricos y se proponen ejercicios y problemas para ser resueltos por los alumnos. |
30 | B01 CB1 CB2 CB3 CB4 CB5 | |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases prácticas. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. En estas clases se desarrollan actividades de aplicación de los conocimientos adquiridos a problemas concretos que permitan ampliar y profundizar en dichos conocimientos. Los alumnos podrán trabajar individualmente o en grupos pequeños. |
15 | B01 CB1 CB2 CB3 CB4 CB5 CT1 | |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de Informática. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas. Método expositivo. En estas clases los estudiantes resolverán un conjunto de problemas utilizando las aplicaciones informáticas de un programa de cálculo simbólico y numérico y analizarán los resultados obtenidos. Asimismo, el profesor presentará los contenidos básicos correspondientes al cálculo numérico. |
15 | B01 CB1 CB2 CB3 CB4 CB5 CT1 | |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual/autónomo. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Contrato de aprendizaje. Estas sesiones contemplan el trabajo realizado por el alumno para comprender los contenidos impartidos en clases teóricas, en clases de problemas y en prácticas con ordenador. Asimismo, se contempla la búsqueda bibliográfica necesaria para el mejor estudio. |
74 | B01 CB1 CB2 CB3 CB4 CB5 | |
11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y seminarios. Sesiones dedicadas a orientar al alumno sobre cómo abordar la resolución de ejercicios y problemas relativos al desarrollo de la asignatura. |
4 | B01 CB1 CB2 CB3 CB4 CB5 | |
12. Actividades de evaluación | ACTIVIDADES DE EVALUACIÓN Sesiones donde se realizan las diferentes pruebas de progreso periódico. |
12 | B01 CB1 CB2 CB3 CB4 CB5 |
Evaluación
Criterios Generales de Evaluación
El sistema de evaluación se realizará de acuerdo con la normativa propia de la Universidad de Cádiz. No obstante, los criterios específicos de calificación dependerán de las pruebas de evaluación concretas. Como criterio general se valorará la claridad y presentación de las respuestas, la adecuación de los resultados obtenidos, la coherencia de los resultados obtenidos, así como, la justificación y correcta definición de las variables, sucesos e hipótesis planteadas y el procedimiento empleado en la resolución de los problemas y de las posibles cuestiones teóricas planteadas. Los procedimientos de evaluación tomarán en consideración la participación activa del estudiante en las actividades de aprendizaje que se programen, y los niveles de aprendizaje que los estudiantes acrediten mediante las mismas. La participación activa está integrada en las actividades de aprendizaje de la asignatura.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Realización de pruebas de progreso. | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura. |
|
B01 CB1 CB2 CB3 CB4 CB5 |
Realización de una prueba final. | Prueba escrita compuesta por ejercicios de conocimientos teóricos y prácticos. |
|
B01 CB1 CB2 CB3 CB4 CB5 |
Test o pruebas de conocimientos básicos | Prueba objetiva de elección múltiple/Ánalisis documental. |
|
B01 CB1 CB2 CB3 CB4 CB5 |
Trabajo de realización de las pruebas de informática. | Análisis documental/Rúbrica de valoración de documentos. |
|
B01 CB1 CB2 CB3 CB4 CB5 CT1 |
Procedimiento de calificación
Se evaluará tanto la realización de diversas actividades que se propondrán en el aula, las pruebas de progreso que se realizarán a lo largo del curso, y la participación activa del alumno mediante la entrega de tareas. En las pruebas de progreso se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. Estas pruebas serán usualmente escritas. Supondrán un 80% de la calificación global de la asignatura. Los test o pruebas de conocimientos básicos supondrán un 10% de la calificación global de la asignatura, y podrán ser propuestos y a realizar en el Aula o través del Campus Virtual. El trabajo de realización de las Prácticas de Informática tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado, y supondrá un 10% de la calificación global de la asignatura. El alumno que no supere una, o más de una, de las pruebas de progreso anteriores, deberá realizar un Examen Final que se valorará de la misma forma que las pruebas de progreso (suponiendo un 80% de la calificación final), siendo la Junta de Escuela quien establezca la fecha y el lugar de realización. Se considerará que han adquirido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas con un mínimo de 3'5 (sobre 8) en las pruebas de progreso.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
TEMA 0.- FUNCIONES DE UNA VARIABLE Lección 1.- Cálculo diferencial de funciones de una variable Números reales y complejos.- Definición de función.- Concepto de continuidad y límite.- Cálculo de límites.- Concepto de derivada.- Interpretación de la derivada.- Cálculo de derivadas.- Teoremas del valor medio.- Regla de LHôpital.- Derivación implícita. Lección 2.- Cálculo integral de funciones de una variable Función primitiva.- Cálculo de primitivas.- Problema del área de una región plana.- Integral de Riemann.- Propiedades de la integral de Riemann.- Teorema del valor medio.- Teorema fundamental del Cálculo y regla de Barrow.- Aplicaciones de la integral.- Integrales impropias. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R01 R02 R03 R03' R05 |
TEMA 1.- SUCESIONES Y SERIES Sucesiones reales.- Límite de una sucesión.- Conceptos de convergencia y divergencia.- Series reales: de términos positivos, alternadas y de términos cualesquiera .- Conceptos de convergencia y divergencia.- Series geométricas y armónica simple.- Criterios de convergencia.- Series de potencias.- Teorema de Taylor.- Series de McLaurin y Taylor. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R04 R06 |
TEMA 2.- MÉTODOS NUMÉRICOS Resolución numérica de ecuaciones.- Interpolación polinómica.- Aproximación de funciones.- Diferenciación e integración numérica. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R01 R02 |
TEMA 3.- CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES Introducción a funciones de varias variables.- Superficies en el espacio.- Continuidad y límites.- Derivadas parciales.- Diferenciabilidad.- Regla de la cadena.- Derivadas direccionales.- Derivación implícita.- Optimización de funciones de varias variables.- Multiplicadores de Lagrange. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R02 R07 R08 R09 R10 |
TEMA 4.- CÁLCULO INTEGRAL DE FUNCIONES DE VARIAS VARIABLES Integrales iteradas.- Integrales dobles y triples.- Aplicaciones.- Cambio de variables: coordenadas polares, cilíndricas y esféricas. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R11 R12 R13 R14 |
Bibliografía
Bibliografía Básica
- R. Courant y F. John, Introduction to Calculus and Analysis, Springer Verlag, NY, 1989.
- R. Strang, Calculus, Wellesley-Cambridge Press, Wellesley, 1991.
- J. Stewart, Calculus: Concepts and Contexts, Brooks Cole, Belmont, 2009.
- R.L. Burden y J.D. Faires, Análisis Numérico, International Thomson Editores S.A., 2002.
- J.M. Sanz Serna, Diez lecciones de cálculo numérico, Universidad de Valladolid, Secretariado de Publicaciones e Intercambio Científico, 1998.
- S.L. Salas, E. Hille, G.J. Etgen. Calculus. Una y varias variables (dos volúmenes), Editorial Reverté, 2002-3.
- D. Pestana, J.M. Rodríguez, E. Romera, E. Touris, V. Álvarez, A. Portilla. Curso práctico de Cálculo y Precálculo, Ariel, 2000.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente.