Fichas de asignaturas 2012-13
![]() |
MATEMÁTICAS I |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesores |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 40212004 | MATEMÁTICAS I | Créditos Teóricos | 3 |
Título | 40212 | GRADO EN ENOLOGÍA | Créditos Prácticos | 3,5 |
Curso | 1 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Recomendaciones
Conocer y manejar correctamente las materias que se imparten en Matemáticas II de Bachillerato.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
JESUS | MEDINA | MORENO | PROFESOR TITULAR DE UNIVERSIDAD | S |
![]() |
MOISES | VILLEGAS | VALLECILLOS | PROFESOR AYUDANTE DOCTOR | N |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB01 | Que los estudiantes hayan demostrado poseer conocimiento en materias básicas científicas y tecnológicas y en viticultura y enología que permitan un aprendizaje continuo, así como una capacidad de adaptación a nuevas situaciones o entornos cambiantes. | GENERAL |
CB02 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. | GENERAL |
CB03 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes | GENERAL |
CE01 | Tener la capacidad para la resolución de los problemas matemáticos y estadísticos necesarios para el ejercicio de la profesión de enólogo. | ESPECÍFICA |
CG10 | Capacidad para utilizar con fluidez la informática a nivel de usuario. | GENERAL |
Resultados Aprendizaje
Identificador | Resultado |
R1 | Disponer de los fundamentos matemáticos necesarios para poder entender y tratar de una manera rigurosa aquellos aspectos de la Biología, Enología, Física y Química que no son meramente conceptuales y que necesitan de estas herramientas operativas para la deducción de las relaciones entre las variables y las correspondientes funciones. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | Se presentarán y desarrollarán los conceptos básicos para una buena formación en las técnicas del álgebra lineal y del cálculo diferencial e integral de funciones de una y varias variables. Todos estos conceptos irán acompañados de ejemplos ilustrativos. |
24 | CB01 CB02 CB03 CE01 | |
02. Prácticas, seminarios y problemas | Se realizarán ejercicios para afianzar los conceptos presentados en las clases de teoría. |
16 | CB01 CB02 CB03 CE01 | |
03. Prácticas de informática | En las clases con ordenador se introducirá el programa de cálculo simbólico MAXIMA y las nociones suficientes para la resolución de ejercicios de la asignatura con éste. |
12 | CB01 CB02 CB03 CE01 CG10 | |
10. Actividades formativas no presenciales | Se propondrán diariamente ejercicios para que el alumno realice en casa y repase la materia presentada. Además, al finalizar cada tema tendrán que realizar una relación de ejercicios. Para la realización de estas actividades, el alumno necesitará invertir aproximadamente 57 horas. También tendrán que preparar una serie de controles que se realizarán a lo largo del curso. El alumno deberá estudiar en total, aproximadamente, 8 horas. Para preparar el examen final el alumno tendrá que invertír aproximadamente 20 horas de estudio, en las que repasará la teoría y los ejercicios realizados a lo largo del curso, y los completará con más ejercicios que le servirán para prácticar de cara al examen. |
85 | CB01 CB02 CB03 CE01 CG10 | |
11. Actividades formativas de tutorías | Los alumnos deberán pasar por el despacho del profesor de forma individual y en grupos reducidos durante el curso. Además, tendrán tutorías en grupos en las que se repasarán herramientas básicas necesarias para la asignatura. |
10 | CB01 CB02 CB03 CE01 | |
12. Actividades de evaluación | Se realizará un examen final que durará aproximadamente 3 horas. Además se realizarán controles no eleminatorios y exámenes de prácticas que se propondrán en las horas dedicadas a actividades presenciales. |
3 | CB01 CB02 CB03 CE01 CG10 |
Evaluación
Criterios Generales de Evaluación
Se valorará la adecuación y claridad de las respuestas a las cuestiones planteadas, en cualqauiera de las técnicas o instrumentos utilizados, la capacidad de integración de la información y de coherencia en los argumentos.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
R11. Realización de prueba teorico-práctico de conocimientos de la materia | Escala de valoración |
|
CB01 CB02 CB03 CE01 |
R21. Resolución de problemas | Análisis documental |
|
CB01 CB02 CB03 CE01 |
R31. Realización de las prácticas de informática | Análisis documental |
|
CB01 CB02 CB03 CE01 CG10 |
R32. Resolución de supuestos de prácticas de informática | Escala de valoración |
|
CB01 CB02 CB03 CE01 CG10 |
Procedimiento de calificación
Se valorará, hasta 1 punto, la realización de diversas actividades que se propondrán en el aula y los controles no eliminatorios que se realizarán a lo largo del curso. La nota obtenida en este apartado se tendrá en cuenta en las convocatorias extraordinarias de junio y de septiembre. Además, se realizará una prueba con ordenador que se evaluará hasta 1,5 puntos. Finalmente, se hará una prueba escrita que se puntuará con un máximo de 8,5 puntos. Se considerará que han adquirido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
1. Resolución de sistemas de ecuaciones lineales y matrices. Métodos de resolución. Matrices y sus propiedades. 2. Espacios vectoriales. Dependencia e independencia lineal. Subespacios vectoriales. Ecuaciones de un subespacio vectorial. 3. Aplicaciones lineales. Propiedades de las aplicaciones lineales. Representación matricial. Diagonalización de matrices. 4. Funciones reales de variable real. Funciones elementales. Continuidad. Derivadas. Representación gráfica. Cálculo de extremos. Polinomio de Taylor. 5. Integración de funciones reales de variable real. Técnicas básicas de cálculo de primitivas. Aplicaciones del cálculo de primitivas. 6. Funciones de varias variables. Curvas de nivel. Representación gráfica. Límites y continuidad. Derivadas parciales y direccionales. Vector gradiente y aplicaciones. Divergencia y rotacional. 7. Integrales dobles y triples. Integrales dobles y triples en recintos sencillos. Integración en coordenadas polares, cilíndricas y esféricas. |
CB01 CB02 CB03 CE01 CG10 | R1 |
Bibliografía
Bibliografía Básica
- Álgebra lineal con aplicaciones. G. Nakos y D. Joyner Ed. Thomson, 1999.
- Problemas resueltos de álgebra lineal. J. Arvesú, F. Marcellán y J. Sánchez. Colección Paso
a Paso (Ed. Thomson), 2005.
- Guia práctica de cálculo infinitesimal en varias variables. F. Galindo, J. Sanz y L. A. Tristán.
Ed. Thomson, 2005.
- Análisis vectorial para la ingeniería. Teoría y problemas. J. L. Galán. Ed. Bellisco, 1998.
- Problemas resueltos de cálculo en varias variables. I. Uña, J. San Martín y V. Tomeo. Co-
lección Paso a Paso (Ed. Thomson), 2007.
Bibliografía Ampliación
- Tests de álgebra lineal. J. L. Ga . Lapresta, M. M. Panero, J. Martínez, J. P. Rincón y C. R.
Palmero AC. Madrid, 1992.
- Cuestiones sobre Álgebra Lineal. Roberto Benavent. Ediciones Paraninfo, 2010.
- Problemas resueltos de cálculo en varias variables. I. Uña, J. San Martín y V. Tomeo. Co-
lección Paso a Paso (Ed. Thomson), 2007.
- Análisis vectorial. J. L. Galán, M. A. Galán, Y. Padilla y P. Rodríguez. Formularios técnicos
y científicos (Ed. Bellisco), 1998.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente.