Fichas de asignaturas 2013-14
![]() |
AMPLIACIÓN DE MATEMÁTICAS |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 40906003 | AMPLIACIÓN DE MATEMÁTICAS | Créditos Teóricos | 3,75 |
Título | 40906 | GRADO EN ARQUITECTURA NAVAL E INGENIERÍA MARÍTIMA | Créditos Prácticos | 3,75 |
Curso | 2 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Haber adquirido las competencias correspondientes a las asignaturas de Cálculo y Álgebra Lineal y Geometría.
Recomendaciones
Tener un hábito de estudio continuado
Profesorado
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmicos numéricos; estadísticos y optimización | ESPECÍFICA |
G03 | Capacidad para el aprendizaje de nuevos métodos y teorías, y versatilidad para adaptarse a nuevas situaciones basándose en los conocimientos adquiridos en materias básicas y tecnológicas | ESPECÍFICA |
G04 | Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y para comunicar y transmitir conocimientos, habilidades y destrezas | ESPECÍFICA |
T01 | Capacidad para la resolución de problemas | GENERAL |
T07 | Capacidad para el razonamiento crítico | GENERAL |
Resultados Aprendizaje
Identificador | Resultado |
R-05 | Aplicar la Transformada de Laplace para la resolución de problemas de valores iniciales y modelos de Ingeniería. |
R-06 | Aplicar la trasformada rápida de Fourier para eliominar ruido de un conjunto de datos. |
R-07 | Clasficar Ecuaciones en Derivadas Parciales de acuerdo a su orden, linealidad o no linealidad, homogeneidad o no homogeneidad. |
R-01 | Comprender las definiciones de Integral de Trayectoria e Integral de Línea |
R-02 | Enunciar los Teoremas de Green, Stokes y Gauss. |
R-03 | Relacionar las Integrales de Superficie y las Integrales de Volumen |
R-04 | Resolver Ecuaciones Diferenciales Ordinarias de Primer Orden y de Orden Superior utilizando los métodos más comunes y mediante métodos numéricos |
R-08 | Resolver problemas de contorno usando Series de Fourier y métodos numéricos. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: Clases teóricas. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Método expositivo. Estudio de casos. En ellas el profesor expone las competencias y objetivos a alcanzar. Se enseñan los contenidos básicos del tema de forma estructurada. También se presentan problemas y casos particulares con la finalidad de aclarar y afianzar los contenidos. Se realiza un seguimiento temporal de la adquisición de conocimientos a través de preguntas en clase. |
30 | G03 | |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases prácticas. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas. Aprendizaje basado en la resolución de ejercicios. En ellas se desarrollan actiivdades de apliación de los conocimientos a situaciones concretas que permiten profundizar y ampliar los conceptos expuestos en las clases teóricas, con un especial énfasis en el autoaprendizaje. Los alumnos eligen la técnica a utilizar, la aplicación del procedimiento y la interpretación de resultados. |
15.04 | B01 G04 T01 T07 | |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de informática. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas haciendo uso de programas de cálculo simbólico. Sesiones en donde los alumnos resolveran un conjunto de problemas utilizando las técnicas descritas en 0.2 y usando aplicaciones informáticas de un programa de cálculo simbólico. |
14.96 | B01 T01 | |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Contrato de aprendizaje. Esta carga contempla el trabajo realizado por elalumno para comprender los contenidos impartidos en teoría, la resolución de ejercicios y problemas, así como la búsqueda bibliográfica. |
79 | Reducido | B01 G03 G04 T01 T07 |
11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y Seminarios. Sesiones dedicadas a orientar y asesorar al alumno sobre cómo abordar la realización de problemas sobre los distintos contenidos de la asignatura. |
5 | Reducido | G03 T01 T07 |
12. Actividades de evaluación | Sesiones en las que se realizarán las distintas pruebas de progreso. |
6 | Grande | B01 G03 G04 T01 T07 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Asistencia a Clases Teóricas y Clases Prácticas |
|
||
Realización de Pruebas de Progreso | Prueba escrita con ejercicios prácticos sobre el contenido de la asignatura. |
|
B01 G03 G04 T01 T07 |
Realización de una Prueba Final | Prueba escrita compuesta por ejercicios de conocimientos teóricos y prácticos |
|
B01 G03 G04 T01 T07 |
Test o Pruebas de Conocimientos Básicos. | Prueba objetiva de elección múltiple/análisis documental |
|
B01 G03 G04 T07 |
Trabajo de realización de las prácticas de informática | Análisis documental/rúbrica de valoración de documentos |
|
B01 G04 T01 T07 |
Procedimiento de calificación
Se evaluará tanto la realización de diversas actividades que se propondrán en el aula, las pruebas de progreso que se realizarán a lo largo del curso, y la participación activa del alumno en clase y mediante la entrega de tareas. En las pruebas de progreso se valorará la adecuación, claridad, coherencia de los razonamientos, justificación y precisión en las respuestas. Estas pruebas serán usualmente escritas. Supondrán un 80% de la calificación global de la asignatura. Los test, tareas o pruebas de conocimientos básicos supondrán un 10% de la calificación global de la asignatura, y podrán ser propuestos y a realizar en el Aula o través del Campus Virtual. El trabajo de realización de las Prácticas de Informática tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado, y supondrá un 10% de la calificación global de la asignatura. Para que las calificaciones de los test, tareas o pruebas de conocimientos básicos, y de las prácticas de informática sean positivas, se requerirá una asistencia habitual a las clases de teoría, problemas y prácticas., además de superar las pruebas de progreso. El alumno que no supere una, o más de una, de las pruebas de progreso anteriores, deberá realizar un Examen Final que se valorará de la misma forma que las pruebas de progreso (suponiendo un 80% de la calificación final), siendo la Junta de Escuela quien establezca la fecha y el lugar de realización. Se considerará que han adquirido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
Tema 1: INTEGRALES DE LINEA Definiciones. Gradiente de un campo escalar. Campos vectoriales. Cálculo de la integral de línea. Campos vectoriales conservativos e independencia del camino. Teorema de Green |
B01 G03 G04 T01 T07 | R-01 R-02 RR |
Tema 2: INTEGRAL DE SUPERFICIE. Divergencia y Rotacional de un campo vectorial. Área de una superficie. Integral de Superficie. Cálculo de integrales de superficie. Flujo de un campo vectorial. . Teorema de la divergencia o de Gauss. Teorema de Stokes. |
B01 G03 G04 T01 T07 | R-02 R-03 RR |
Tema 3: ECUACIONES DIFERENCIALES ORDINARIAS (E.D.O.) Origen y definición de las E.D.O. Conceptos fundamentales. Soluciones. Tipos de soluciones. Clasificación de las E.D.O. |
B01 G03 G04 | R-04 RR |
Tema 4: E.D.O. DE PRIMER ORDEN Teorema de existencia y unicidad de soluciones. Interpretación geométrica de la ecuación y'=F(x,y) (en prácticas). E.D. con variables separadas y reducibles a ellas. E.D. homogéneas y reducibles a ellas. E.D. exactas. Reducibles a exactas: Factor integrante. E.D. lineales de 1er orden. Definiciones. Resolución. Ecuación de Bernoulli. |
B01 G03 G04 T01 T07 | R-04 RR |
Tema 5: E.D.O. LINEALES DE ORDEN SUPERIOR Introducción a las ecuaciones diferenciales lineales de orden superior. Teo rema de existencia y unicidad. Tratamiento vectorial de las soluciones. E.D.O. lineal homogénea de coeficientes constantes: casos en su resolución. E.D.O. lineal completa: método de los coeficientes indeterminados y método de variación de los parámetros. Cambios de variable. Ecuación de Euler. Reducción de un sistema de ecuaciones lineales a una ecuación de orden superior. Sistemas lineales con coeficientes constantes |
B01 G03 G04 T01 T07 | R-04 RR |
Tema 6: TRANSFORMADA DE LAPLACE Introducción. Definición. Cálculo de transformados de funciones elementales. Propiedades. Producto de Convolución. Transformada inversa. Propiedades. Aplicación a la resolución de ecuaciones diferenciales e integrales y sistemas de ecuaciones lineales. |
B01 G03 G04 T01 T07 | R-05 R-04 RR |
Tema 7: RESOLUCION DE E. D. MEDIANTE SERIES DE POTENCIAS Aplicación de las series de potencias a la resolución de ecuaciones diferenciales. Resolución numérica de ecuaciones diferenciales. |
B01 G03 G04 T01 T07 | R-06 R-04 R-08 RR |
Tema 8. INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES |
B01 G03 G04 | R-07 RR |
Bibliografía
Bibliografía Básica
- LARSON-HOSTETLER, Cálculo. vol II, Ed. McGraw-Hill.
- García, A., López, A., Rodríguez, G., Romero, S. y de la Villa, A., Cálculo II. Teoría y problemas de funciones de varias variables. Ed.Clagsa, 1996.
- KISELOV, A.; KRASNOV, M.; MAKARENKO, G., Problemas de ecuaciones diferenciales ordinarias, Moscú, Ed. Mir 1984
- Kreyszig, E. Matemáticas avanzadas para Ingeniería I y II. Ed. Limusa Wiley, 2000
- MARCELLÁN, F.; CASASÚS, L.; ZARZO, A., Ecuaciones diferenciales. Problemas lineales y aplicaciones, Madrid, Ed. McGraw-Hill,1990
- GEORGE F. SIMMONS, Ecuaciones Diferenciales, con aplicaciones y notas históricas. Madrid. Ed. McGraw-Hill,1998
- GLIN JAMES, Matemáticas avanzadas para Ingeniería. México. Ed. Pearson Educación. 2002
-JESÚS SAN MARTÍN MORENO, VENANCIO TOMEO PERUCHA, ISAÍAS UÑA JUÁREZ, Métodos
Matemáticos. Ampliación de Matemáticas para Ciencias e Ingeniería. Thomson 2005.
-VVAA Métodos matemáticos. Ed.Thomson.2005
-MANUEL LÓPEZ RODRÍGUEZ. Problemas Resueltos de Ecuaciones Diferenciales. Ed. Thomson.2006
-RICHARD BRONSON, GABRIEL COSTA Ecuaciones Diferenciales. Schaum. Ed. Mc Graw Hill. 2008
- HENRY RICARDO. Ecuaciones Diferenciales: una introducción moderna. Ed. Reverte. 2008
- DENNIS G. ZILL. Ecuaciones diferenciales con aplicaciones de modelado. International Thomson, 1997.
- MARTINEZ DE LA ROSA, F. Matemáticas II. Servicio de Publicaciones de la Universidad de Cádiz.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.