Fichas de asignaturas 2013-14
![]() |
CÁLCULO |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 21716001 | CÁLCULO | Créditos Teóricos | 3,75 |
Título | 21716 | GRADO EN INGENIERÍA AEROESPACIAL | Créditos Prácticos | 3,75 |
Curso | 1 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
Requisitos previos
Ninguno.
Recomendaciones
Tener los conocimientos impartidos en la asignatura MATEMÁTICAS II de bachillerato. También se recomienda tener un hábito de estudio continuado sobre la asignatura.
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
ALBERTO | FERNANDEZ | ROS | Profesor Asociado | N |
![]() |
LUIS | LAFUENTE | MOLINERO | PROFESOR CONTRATADO DOCTOR | S |
![]() |
FRANCISCO | ORTUS | ESCUDIER | PROFESOR ASOCIADO | N |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; Estadística y optimización | ESPECÍFICA |
CB1 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. | GENERAL |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. | GENERAL |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. | GENERAL |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado. | GENERAL |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. | GENERAL |
CT1 | Trabajo en equipo: capacidad de asumir las labores asignadas dentro de un equipo, así como de integrarse en él y trabajar de forma eficiente con el resto de sus integrantes. | GENERAL |
Resultados Aprendizaje
Identificador | Resultado |
R01 | R01. Entender los teoremas de continuidad y derivabilidad de funciones reales de variable real. Aplicar los resultados de dichos teoremas para el análisis de soluciones de ecuaciones no lineales. |
R02 | R02. Derivar e integrar funciones de una y varias variables tanto simbólicamente como mediante métodos numéricos. |
R03 | R03. Calcular áreas y volúmenes |
R03' | R03'. Entender el concepto de integral impropia. Saber aplicar los criterios de convergencia para el análisis de las mismas. |
R04 | R04. Entender el teorema de Taylor. Saber calcular el desarrollo de Taylor de funciones reales de variable real. Aplicar el desarrollo de Taylor para aproximación de funciones, para el estudio local de una función y para el cálculo de límites. |
R05 | R05. Entender el teorema fundamental del Cálculo. Aplicar dicho teorema para el cálculo de derivadas de funciones reales definidas a partir de una integral definida. |
R06 | R06. Entender el concepto de convergencia y divergencia en sucesiones y series de números reales. Saber calcular límites de sucesiones de números reales y utilizar los criterios de convergencia para series de números reales. |
R07 | R07. Obtener extremos relativos, absolutos y condicionados de una función. |
R08 | R08. Entender el concepto de diferenciabilidad de funciones de varias variables. Entender los conceptos de derivadas direccionales y saber calcularlas. Saber calcular el plano tangente de superficies diferenciables. |
R09 | R09. Interpretación geométrica del gradiente de una función de varias variables. |
R10 | R10. Saber utilizar la regla de la cadena para el cálculo de derivadas de funciones de varias variables. Saber calcular las derivadas parciales de funciones definidas implícitamente. |
R11 | R11. Comprender la definición de integral doble sobre un rectángulo como una suma de Riemann y su generalización a regiones más generales. |
R12 | R12. Usar el cambio en el orden de integración. |
R13 | R13. Interpretar geométricamente la integral triple como un volumen. |
R14 | R14. Aplicaciones físicas de las integrales múltiples (centro de masas, momentos de inercia,...). |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: Clases teóricas. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Método expositivo. Lección magistral. En estas clases el profesor presenta los contenidos básicos correspondientes a las unidades temáticas seleccionadas. Asimismo, se resuelven ejercicios que ayuden a afianzar los conocimientos teóricos y se proponen ejercicios y problemas para ser resueltos por los alumnos. |
36 | B01 CB1 CB2 CB3 CB4 CB5 | |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases prácticas. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. En estas clases se desarrollan actividades de aplicación de los conocimientos adquiridos a problemas concretos que permitan ampliar y profundizar en dichos conocimientos. Los alumnos podrán trabajar individualmente o en grupos pequeños. |
12 | B01 CB1 CB2 CB3 CB4 CB5 CT1 | |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de Informática. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Método expositivo. Resolución de problemas. En estas clases el profesor presentará los contenidos básicos correspondientes al cálculo numérico. Para ello se hará uso de un programa informático de cálculo simbólico y numérico. Los estudiantes deberán resolver un conjunto de problemas utilizando las técnicas y las herramientas adecuadas y analizar los resultados obtenidos. |
12 | B01 CB1 CB2 CB3 CB4 CB5 CT1 | |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual/autónomo. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Contrato de aprendizaje. Estas sesiones contemplan el trabajo realizado por el alumno para comprender los contenidos impartidos en clases teóricas, en clases de problemas y en prácticas con ordenador. Asimismo, se contempla la búsqueda bibliográfica necesaria para el mejor estudio. |
74 | B01 CB1 CB2 CB3 CB4 CB5 | |
11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y seminarios. Sesiones dedicadas a orientar al alumno sobre cómo abordar la resolución de ejercicios y problemas relativos al desarrollo de la asignatura. |
4 | B01 CB1 CB2 CB3 CB4 CB5 | |
12. Actividades de evaluación | ACTIVIDADES DE EVALUACIÓN Sesiones donde se realizan las diferentes pruebas de progreso periódico. |
12 | B01 CB1 CB2 CB3 CB4 CB5 |
Evaluación
Criterios Generales de Evaluación
El sistema de evaluación se realizará de acuerdo con la normativa propia de la Universidad de Cádiz. No obstante, los criterios específicos de calificación dependerán de las pruebas de evaluación concretas.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Actividades de seguimiento y control de las prácticas de informática. | Se realizarán actividades de seguimiento de la labor del estudiante en las prácticas de informática. Los procedimientos de evaluación tomarán en consideración la participación activa del estudiante en las actividades de aprendizaje que se programen, y los niveles de aprendizaje que los estudiantes acrediten mediante las mismas. |
|
B01 CB1 CB2 CB3 CB4 CB5 CT1 |
Realización de pruebas de conocimientos básicos. | Prueba escrita con ejercicios teórico-prácticos sobre conocimientos básicos de la asignatura (como, por ejemplo, técnicas de derivación e integración). |
|
B01 CB1 CB2 CB3 CB4 CB5 |
Realización de una prueba final. | Prueba escrita compuesta por ejercicios de conocimientos teóricos y prácticos. |
|
B01 CB1 CB2 CB3 CB4 CB5 |
Procedimiento de calificación
La calificación global y final de la asignatura se obtendrá de una suma ponderada de las calificaciones obtenidas en las actividades y pruebas anteriormente descritas, según se detalla a continuación: 1) La prueba de conocimientos básicos supondrán un 20% de la calificación global de la asignatura. 2) La prueba final supondrá un 60% de la calificación global de la asignatura. 3) Las actividades de seguimiento y control de las prácticas de informática supondrán un 20% de la calificación global de la asignatura. Es necesario que el alumno supere individualmente tanto la prueba de conocimientos básicos como la prueba final. La nota correspondiente a las prácticas de informática solo se sumará cuando se hayan superado ambas pruebas. El alumno tendrá la posibilidad de superar la prueba de conocimientos básicos y la prueba final, independientemente, en todas las convocatorias oficiales de la asignatura, cuya fecha y lugar de realización serán fijadas por la Junta de Escuela. No obstante, los profesores de la asignatura podrán convocar la prueba de conocimientos básicos en una fecha anterior a la primera convocatoria oficial. La calificación de cada una de las pruebas superadas se conservará hasta aprobar la asignatura o hasta consumir la última convocatoria oficial del curso académico correspondiente. Se considerará que han adquirido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
TEMA 0.- FUNCIONES DE UNA VARIABLE Lección 1.- Cálculo diferencial de funciones de una variable Números reales y complejos.- Definición de función.- Concepto de continuidad y límite.- Cálculo de límites.- Concepto de derivada.- Interpretación de la derivada.- Cálculo de derivadas.- Teoremas del valor medio.- Regla de LHôpital.- Derivación implícita. Lección 2.- Cálculo integral de funciones de una variable Función primitiva.- Cálculo de primitivas.- Problema del área de una región plana.- Integral de Riemann.- Propiedades de la integral de Riemann.- Teorema del valor medio.- Teorema fundamental del Cálculo y regla de Barrow.- Aplicaciones de la integral.- Integrales impropias. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R01 R02 R03 R03' R05 |
TEMA 1.- SUCESIONES Y SERIES Sucesiones reales.- Límite de una sucesión.- Conceptos de convergencia y divergencia.- Series reales: de términos positivos, alternadas y de términos cualesquiera .- Conceptos de convergencia y divergencia.- Series geométricas y armónica simple.- Criterios de convergencia.- Series de potencias.- Teorema de Taylor.- Series de McLaurin y Taylor. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R04 R06 |
TEMA 2.- MÉTODOS NUMÉRICOS Resolución numérica de ecuaciones.- Interpolación polinómica.- Aproximación de funciones.- Diferenciación e integración numérica. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R01 R02 |
TEMA 3.- CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES Introducción a funciones de varias variables.- Superficies en el espacio.- Continuidad y límites.- Derivadas parciales.- Diferenciabilidad.- Regla de la cadena.- Derivadas direccionales.- Derivación implícita.- Optimización de funciones de varias variables.- Multiplicadores de Lagrange. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R02 R07 R08 R09 R10 |
TEMA 4.- CÁLCULO INTEGRAL DE FUNCIONES DE VARIAS VARIABLES Integrales iteradas.- Integrales dobles y triples.- Aplicaciones.- Cambio de variables: coordenadas polares, cilíndricas y esféricas. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R11 R12 R13 R14 |
Bibliografía
Bibliografía Básica
- R. Courant y F. John, Introduction to Calculus and Analysis, Springer Verlag, NY, 1989.
- R. Strang, Calculus, Wellesley-Cambridge Press, Wellesley, 1991.
- J. Stewart, Calculus: Concepts and Contexts, Brooks Cole, Belmont, 2009.
- R.L. Burden y J.D. Faires, Análisis Numérico, International Thomson Editores S.A., 2002.
- J.M. Sanz Serna, Diez lecciones de cálculo numérico, Universidad de Valladolid, Secretariado de Publicaciones e Intercambio Científico, 1998.
- S.L. Salas, E. Hille, G.J. Etgen. Calculus. Una y varias variables (dos volúmenes), Editorial Reverté, 2002-3.
- D. Pestana, J.M. Rodríguez, E. Romera, E. Touris, V. Álvarez, A. Portilla. Curso práctico de Cálculo y Precálculo, Ariel, 2000.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.