Usted está aquí: Inicio web asignaturas

 

Fichas de asignaturas 2014-15


CÁLCULO INFINITESIMAL I

Asignaturas
 

  Código Nombre    
Asignatura 40209001 CÁLCULO INFINITESIMAL I Créditos Teóricos 4.5
Título 40209 GRADO EN MATEMÁTICAS Créditos Prácticos 3
Curso   1 Tipo Troncal
Créd. ECTS   6    
Departamento C101 MATEMATICAS    

 

Requisitos previos

Contenidos de matemáticas de primero y segundo de bachillerato.

 

Profesorado

Nombre Apellido 1 Apellido 2 C.C.E. Coordinador  
FRANCISCO BENITEZ TRUJILLO Catedratico de Escuela Univer. S

 

Competencias

Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.

Identificador Competencia Tipo
CB1 Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio BÁSICA
CB2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vacación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio BÁSICA
CB3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética BÁSICA
CB4 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado BÁSICA
CE1 Comprender y utilizar el lenguaje matemático. Adquirir la capacidad para enunciar proposiciones en distintos campos de las matemáticas, para construir demostraciones y para transmitir los conocimientos matemáticos adquiridos. ESPECÍFICA
CE2 Conocer demostraciones rigurosas de algunos teoremas clásicos en distintas áreas de las matemáticas. ESPECÍFICA
CE3 Asimilar la definición de un nuevo objeto matemático, en términos de otros ya conocidos y ser capaz de utilizar este objeto en diferentes contextos. ESPECÍFICA
CE4 Saber abstraer las propiedades estructurales (de objetos matemáticos, de la realidad observada y de otros ámbitos) distinguiéndolas de aquellas puramente ocasionales y poder comprobarlas con demostraciones o refutarlas con contraejemplos, así como identificar errores en razonamientos incorrectos. ESPECÍFICA
CE5 Resolver problemas matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos. ESPECÍFICA
CE6 Proponer, analizar, validar e interpretar modelos de situaciones reales sencillas, utilizando las herramientas matemáticas más adecuadas a los fines que se persigan. ESPECÍFICA
CE7 Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, visualización gráfica, optimización u otras para experimentar en matemáticas y resolver problemas. ESPECÍFICA
CG1 Utilizar herramientas de búsqueda de recursos bibliográficos. GENERAL
CG3 Comprobar o refutar razonadamente los argumentos de otras personas. GENERAL
CT1 Saber gestionar el tiempo de trabajo. TRANSVERSAL

 

Resultados Aprendizaje

Identificador Resultado
01 01. Conocer las propiedades algebraicas y de orden de los números reales, operando con desigualdades y valores absolutos.
02 02. Conocer las propiedades y saber operar con números complejos.
03 03. Conocer y aplicar los conceptos fundamentales relativos a sucesiones y series numéricas.
04 04. Conocer e identificar las principales funciones elementales y sus propiedades fundamentales.
05 05. Comprender y trabajar intuitiva, geométrica y formalmente las nociones de límite, así como conocer los resultados fundamentales relativos a los mismos y aplicarlos convenientemente.
07 07. Representar funciones y deducir propiedades de una función a partir de su gráfica.
08 08. Modelizar situaciones poco complejas, resolviéndolas con las herramientas del cálculo.

 

Actividades formativas

Actividad Detalle Horas Grupo Competencias a desarrollar
01. Teoría
36 Grande
02. Prácticas, seminarios y problemas
24 Mediano
10. Actividades formativas no presenciales
Estudio y resolución de problemas.
70
11. Actividades formativas de tutorías
10 Reducido
12. Actividades de evaluación
Exámenes oficiales de la asignatura.
10

 

Evaluación

Criterios Generales de Evaluación

La evaluación es continua y se realizará mediante las siguientes actividades,
cuya realización es obligatoria, y con el peso que se indica:
- Evaluación inicial, obligatoria para la realización de las pruebas presenciales
(5%).
- Asistencia y participación en las clases, obligatoria para la realización de
las pruebas presenciales. La no asistencia justificada puede recuperarse mediante
la defensa oral de algún contenido del temario fijado por el profesor (5%).
- Tests realizados online, cuya superación es obligatoria para la realización de
las pruebas presenciales de todas las convocatorias (10%).
- Tareas individuales presentadas en LaTeX, obligatoria para la realización de
las pruebas presenciales (5%).
- Pruebas presenciales: se convocarán por bloques de temas y consistirán en la
realización de un test y preguntas consistentes en resolución de
problemas y demostraciones de resultados complementarios. Una de las pruebas
presenciales consistirá en la exposición oral y debate de algún contenido del
temario elegido por el alumno entre los propuestos por el profesor y la realizará
una vez haya superado el resto de las actividades de evaluación realizadas hasta
el momento de la elección (75%). En las fechas fijadas por el centro se
realizarán las recuperaciones de las pruebas presenciales, siempre que hayan
superado el resto de las actividades de evaluación (tests y tareas). La no
asistencia a las clases podrá recuperarse con trabajos individuales cuyo
contenido será fijado por el profesor.

Para la calificación de los ejercicios, a parte del resultado, se obtendrá mayor
o menor valoración según que:
1.- desarrolle o no los ejercicios de forma clara y con orden, detallando los
pasos que va dando.
2.- demuestre o no que tiene idea de la mayoría de las técnicas y conceptos
involucrados en el examen.
3.- razone o no de forma correcta.
4.- cometa o no errores de concepto.

 

Procedimiento de calificación

- Evaluación inicial, obligatoria para la realización de las pruebas presenciales
(5%).
- Asistencia y participación en las clases (5%).
- Tests online (10%).
- Tareas individuales(5%).
- Pruebas presenciales (75%).

 

Descripcion de los Contenidos

Contenido Competencias relacionadas Resultados de aprendizaje relacionados
            1.- Números reales.
Propiedades algebraicas. Propiedades de orden de los números reales. Números
naturales,  números enteros y números racionales. Valor absoluto de un número
real.

2.- Propiedad de completitud.
Conjuntos acotados: principio del supremo. La propiedad arquimediana y sus
consecuencias. Buen orden de los números reales: parte entera de un número real.
Principio de los intervalos encajados. Representación decimal de los números
reales.

3.- Funciones algebraicas I.
Potenciación. Radicación. Funciones: concepto y generalidades. Gráficas.
Operaciones con funciones. Funciones enteras o polinómicas. Funciones
racionales.

4.- Funciones algebraicas II.
Composición de funciones. Función inversa. Funciones monótonas y acotadas.
Ecuaciones e inecuaciones. Igualdades y desigualdades notables.

5.- Sucesiones.
Concepto de sucesión. Progresiones aritméticas. Progresiones geométricas.
Progresiones aritmético-geométricas. Sucesiones cuyo término general es
polinómico.

6.- Sucesiones convergentes.
Convergencia. Sucesiones que tienden a cero. Álgebra de límites. Límites
infinitos. Sucesiones monótonas. Imagen de una sucesión mediante funciones
reales: funciones continuas.

7.- Funciones exponenciales y logarítmicas.
El número e. Exponencial de un número real. Funciones exponenciales. Logaritmo
de
un número real. Funciones logarítmicas.

8.- Números complejos y funciones trigonométricas.
Conjunto de los números complejos. Las razones trigonométricas. Forma
trigonométrica y forma polar de un número complejo. Funciones trigonométricas.

9.- Cálculo de límites de sucesiones.
Cálculo mediante transformaciones y acotaciones. Límites con exponenciales.
Regla
de Stolz. Infinitos e infinitésimos: equivalencias. Sucesiones recurrentes:
estudio de la monotonía, acotación y convergencia.

10.- Subsucesiones.
Subsucesiones: teorema de Bolzano-Weierstrass. Sucesiones de Cauchy. Límites de
oscilación.

11.- Límite de funciones.
Límite de una función en un punto. Límites laterales. Límites infinitos y en el
infinito. Cálculo de límites.

        

 

Bibliografía

Bibliografía Básica

Francisco Benítez Trujillo. Cálculo Infinitésimal I. (Disponible a través del campus virtual).

 

 

El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.