Fichas de asignaturas 2014-15
|
AMPLIACIÓN DE MATEMÁTICAS |
|
|
| ||
| Asignatura |
|
| | |
| Profesorado |
|
| | |
| Competencias |
|
| | |
| Resultados Aprendizaje |
|
| | |
| Actividades Formativas |
|
| | |
| Sistemas de Evaluación |
|
| | |
| Contenidos |
|
| | |
| Bibliografía |
|
| Código | Nombre | |||
| Asignatura | 41413003 | AMPLIACIÓN DE MATEMÁTICAS | Créditos Teóricos | 3.75 |
| Título | 41413 | GRADO EN INGENIERÍA MARINA | Créditos Prácticos | 3.75 |
| Curso | 2 | Tipo | Troncal | |
| Créd. ECTS | 6 | |||
| Departamento | C101 | MATEMATICAS |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
Requisitos previos
Estar matriculado en la asignatura
Recomendaciones
Tener aprobadas las asignaturas de Matemáticas del primer curso.
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
| Identificador | Competencia | Tipo |
| B1 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmicos numéricos; estadísticos y optimización | GENERAL |
| B3 | Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos con aplicación en ingeniería | GENERAL |
| E1 | Capacidad para el aprendizaje de nuevos métodos y teorías, que le doten de una gran versatilidad para adaptarse a nuevas situaciones | ESPECÍFICA |
| E2 | Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos habilidades y destrezas | ESPECÍFICA |
Resultados Aprendizaje
| Identificador | Resultado |
| R3 | Conseguir aprender varios métodos numéricos del Cálculo y del Algebra. |
| R1 | Llegar a dominar la resolución de triángulos esféricos. |
| R2 | Llegar a saber resolver las ecuaciones diferenciales lineales sobre todo con la transformada de Laplace. |
Actividades formativas
| Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
| 01. Teoría | MODALIDAD ORGANIZATIVA: clases teóricas. MÉTODO EXPOSITIVO: lección magistral. El profesor expone los contenidos básicos de los temas, se resuelven ejercicios que refuercen los conocimientos teóricos y se proponen ejercicios y problemas para ser resueltos por el alumno. |
30 | E1 | |
| 02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: clases prácticas. MÉTODO de ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. Los alumnos podrán trabajar individualmente o en grupitos. |
14.96 | B1 E2 | |
| 03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de informática. MÉTODO de ENSEÑANZA-APRENDIZAJE: En estas sesiones se resuelven los ejercicios y problemas de las prácticas anteriores. |
15.04 | B1 B3 E2 | |
| 10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual. MÉTODO de ENSEÑANZA-APRENDIZAJE: son sesiones de trabajo del alumno para comprender los contenidos impartidos en las clases teóricas, en las clases de problemas y en las prácticas de ordenador. El alumnno tendrá que hacer eventualmente consultas bibliográficas. |
60 | Mediano | B1 E1 E2 |
| 11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y seminarios. Sesiones dedicadas a orientar al alumno sobre cómo abordar la resolución de ejercicios y problemas relativos al desarrollo de la asignatura. |
20 | Reducido | B1 E1 E2 |
| 12. Actividades de evaluación | Sesiones donde se realizan las diferentes pruebas de progreso periódico del alumno. |
10 | Grande | B1 E1 E2 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación.
Procedimiento de Evaluación
| Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
| Prueba final. | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura. |
|
B1 E1 E2 |
| Prueba informática. | Trabajo de realización de las pruebas de informática. |
|
B1 E1 E2 |
| Pruebas de progreso. | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura. |
|
B1 E1 E2 |
Procedimiento de calificación
Se evaluarán las pruebas de progreso, usualmente escritas, realizadas a lo largo del curso, con un 80% de la calificación global de la asignatura. Las pruebas de conocimientos básicos supondrán un 10% de la nota global y el trabajo de realización de las prácticas de informática el restante 10%. El alumno que no supere alguna de las pruebas de progreso anteriores, deberá realizar un examen final.
Descripcion de los Contenidos
| Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
TEMA 1. TRIGONOMETRÍA ESFÉRICA. Circunferencias máximas. Polos. Angulo esférico. Triángulo esférico. Propiedades
de los lados y ángulos de un triángulo esférico. Coordenadas esféricas: latitud y longitud. Paso de coordenadas
cartesianas a esféricas. Fórmulas de Bessel del coseno del lado y del seno. Triángulo esférico polar: relaciones
entre los elementos de un triángulo y los de su polar. Fórmulas del coseno del ángulo. Analogías de Neper.
Resolución de triángulos esféricos: 6 casos. Triángulos esféricos rectángulos. Pentágono de Neper.
|
E1 | R1 |
TEMA 2. ECUACIONES DIFERENCIALES. Ecuaciones deferenciales de primer orden (de variables separables, lineales y de
Bernouilli), método de variación de constantes de Lagrange. Transformada de Laplace: propiedades, tabla de
transformadas. Ecuaciones diferenciales de orden superior, lineales y con coeficientes constantes. Ecuaciones en
derivadas parciales.
|
E1 | R2 |
TEMA 3. MÉTODOS NUMÉRICOS. Método de Newton de resolución de ecuaciones. Polinomio de interpolación. Integración
numérica: método de los trapecios, Simpson y Romberg. Resolución numérica de ecuaciones diferenciales. Métodos
numéricos del álgebra matricial.
|
E1 | R3 |
Bibliografía
Bibliografía Básica
Mª Asunción Iglesias Martín. Trigonometría esférica. Teoría y problemas resueltos. UPV. Bilbao 2004.
Juan Manuel Nieto Vales. Curso de Trigonometría Esférica. UCA 1996.
Manuel Berrocoso [et al.]. Notas y apuntes de trigonometría esférica y astronomía de posición. UCA 2003.
William E. Boyce, Richard C. DiPrima. Ecuaciones diferenciales y problemas con valores en la frontera. México. Limusa Wiley, 2010.
Robert D. Strum, John R. Ward. Transformada de Laplace; solución de ecuaciones diferenciales. México. F. Trillas 1970.
Richard L. Burden. Análisis Numérico. México. International Thomson,2002.
Claude Brézinski. Introduction à la pratique du calcul numérique. Dunod. Paris, 1988.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.

