Fichas de asignaturas 2014-15
![]() |
ESTRUCTURAS ALGEBRAICAS |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 40209017 | ESTRUCTURAS ALGEBRAICAS | Créditos Teóricos | 4.5 |
Título | 40209 | GRADO EN MATEMÁTICAS | Créditos Prácticos | 3 |
Curso | 2 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Ninguno
Recomendaciones
Haber cursado y superado las asignaturas de las materias "Algebra lineal y Geometría" y "Estructuras básicas del Álgebra" impartidas en el primer curso del grado.
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
ENRIQUE | PARDO | ESPINO | CATEDRATICO DE UNIVERSIDAD | S |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB1 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio | BÁSICA |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vacación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | BÁSICA |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | BÁSICA |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado | BÁSICA |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | BÁSICA |
CE1 | Comprender y utilizar el lenguaje matemático. Adquirir la capacidad para enunciar proposiciones en distintos campos de las matemáticas, para construir demostraciones y para transmitir los conocimientos matemáticos adquiridos. | ESPECÍFICA |
CE2 | Conocer demostraciones rigurosas de algunos teoremas clásicos en distintas áreas de las matemáticas. | ESPECÍFICA |
CE3 | Asimilar la definición de un nuevo objeto matemático, en términos de otros ya conocidos y ser capaz de utilizar este objeto en diferentes contextos. | ESPECÍFICA |
CE4 | Saber abstraer las propiedades estructurales (de objetos matemáticos, de la realidad observada y de otros ámbitos) distinguiéndolas de aquellas puramente ocasionales y poder comprobarlas con demostraciones o refutarlas con contraejemplos, así como identificar errores en razonamientos incorrectos. | ESPECÍFICA |
CE5 | Resolver problemas matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos. | ESPECÍFICA |
CE6 | Proponer, analizar, validar e interpretar modelos de situaciones reales sencillas, utilizando las herramientas matemáticas más adecuadas a los fines que se persigan. | ESPECÍFICA |
CG1 | Utilizar herramientas de búsqueda de recursos bibliográficos. | GENERAL |
CG2 | Poder comunicarse en otra lengua de relevancia en el ámbito científico. | GENERAL |
CG3 | Comprobar o refutar razonadamente los argumentos de otras personas. | GENERAL |
CT1 | Saber gestionar el tiempo de trabajo. | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R2 | Conocer las estructuras algebraicas fundamentales: grupos, anillos y cuerpos. |
R3 | Conocer los enunciados y demostraciones de algunos teoremas clásicos importantes acerca de esas estructuras. |
R1 | Conocer y manejar los principales resultados de polinomios de varias variables. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | El desarrollo del curso se divide en 7 temas. Cada tema teórico se realiza en un solo bloque, iniciándose con un análisis previo en que los alumnos se familiarizan con los items básicos del tema antes de formalizarlos en clases teóricas, finalizando con una sesión de síntesis del tema; durante esta fase el profesor intentará recabar la colaboración activa del alumno con preguntas y propuestas para pensar. |
36 | Grande | CB1 CB3 CB5 CE1 CE2 CE3 CE4 CG1 CG2 CG3 CT1 |
02. Prácticas, seminarios y problemas | Las sesiones de resolución de problemas se realizan al final de cada tema teórico, en un solo bloque. En ellas se conjugan el trabajo individual y el trabajo en grupo, permitiendo comprender los matices de los resultados estudiados. Durante las mismas se incentiva el uso de material bibliográfico adicional. El profesor supervisa el trabajo individual y/o colectivo, haciendo propuestas o sugerencias a las preguntas de los alumnos, y respondiendo a dudas globales del grupo acerca de la resolución de problemas concretos, así como de la selección de las técnicas y estrategias adecuadas para resolver cierto tipo de problemas estandar. |
24 | CB1 CB3 CB4 CE1 CE4 CE5 CE6 CG1 CG2 CG3 CT1 | |
10. Actividades formativas no presenciales | Estudio individual o en pequeños grupos de la materia, incluyendo la resolución de los ejercicios asignados como parte de las tareas. |
54 | Reducido | CB5 CE1 CE2 CE3 CE4 CE5 CG1 |
11. Actividades formativas de tutorías | Reuniones periódicas con el profesor para el seguimiento y orientación en la ejecución de los trabajos de investigación bibliográfica para aquellos grupos que decidan realizar uno de dichos trabajos. |
5 | Reducido | CB3 CB4 CG2 CG3 |
12. Actividades de evaluación | Realización de controles aleatorios de la asignatura, revisión de las memorias de los trabajos de investigación bibliográfico, así como el examen final de la asignatura. |
13 | Reducido | CB1 CB2 CB4 CE1 CE2 CE4 CE5 |
13. Otras actividades | Desarrollo de una actividad académicamente dirigida voluntaria, consistente en la realización de una pequeña investigación de carácter esencialmente bibliográfico relativo a la ampliación de algún aspecto concreto del contenido de la materia. Incluye la búsqueda propiamente dicha, la resolución de pequeñas demostraciones asociadas al tópico, la organización y depuración del material, así como la redacción de una pequeña memoria. Los alumnos que deciden realizarla la desarrollan en grupos pequeños, y cuentan con tutorías específicas con el profesor para la supervisión del mismo. |
18 | Reducido | CB1 CB2 CB3 CB4 CB5 CE1 CE3 CE5 CE6 CG1 CG2 CT1 |
Evaluación
Criterios Generales de Evaluación
El criterio general será el de evaluación continua del alumno, aunque la evaluación incluye un examen final de la asignatura. La evaluación reflejará el nivel de adquisición de las competencias tanto básicas como específicas y transversales relacionadas anteriormente y se hará por medio de las herramientas señaladas en la relación de "Procedimientos de evaluación".
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Controles aleatorios a lo largo del desarrollo de la asignatura | Medio: Control escrito. Técnica: Corrección de examen. Instrumento: Escala de valoración. |
|
CB1 CB2 CE2 CE4 CE5 |
Examen final. | Medio: Control escrito. Técnica: Corrección de examen. Instrumento: Escala de valoración. |
|
CB1 CB2 CB4 CE1 CE2 CE4 CE5 |
Resolución de problemas asignados específicamente. | Medios: Ejercicio escrito. Técnica: Corrección objetiva. Instrumento: Escala de valoración. |
|
CB1 CB3 CB4 CE1 CE4 CE5 CG3 |
Trabajo de investigación bibliográfico. | Medios: 1. Informes de seguimiento de las reuniones. 2. Memoria final del trabajo. Técnicas: 1. Entrevistas periódicas. 2. Corrección de la Memoria. Instrumentos: Escala de valoración de la Memoria. |
|
CB1 CB2 CB3 CB4 CB5 CE1 CE3 CE5 CE6 CG1 CG2 CG3 CT1 |
Procedimiento de calificación
La calificación del alumno se obtendrá por ponderación de todos los instrumentos utilizados. El peso concreto que se otorgará a cada instrumento utilizado en la evaluación será el siguiente: - Examen final teórico-práctico: 70% de la calificación. - Controles aleatorios: 15% de la calificación. - Resolución de problemas asignados: 15% de la calificación. - Trabajo de investigación bibliográfica voluntario: hasta 1 punto extra sobre la calificación total de la asignatura. Los alumnos matriculados que se encuentren realizando una estancia en una universidad extranjera a través del Programa Erasmus en el cuatrimestre en que se imparte la asignatura serán calificados única y exclusivamente por el examen final de la misma. La obtención de una calificación de aprobado por parte del alumno significará que el mismo ha adquirido las competencias asociadas a esta asignatura por lo que se refiere al ámbito de la misma.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
Tema 1. Anillos: propiedades básicas. |
CB1 CB2 CB3 CB5 CE1 CE2 CE3 CE4 CE5 CE6 CG1 CG3 | R2 R3 |
Tema 2. Homomorfismos de anillos |
CB1 CB2 CB3 CB5 CE1 CE2 CE3 CE4 CE5 CE6 CG1 CG3 | R2 R3 |
Tema 3. Anillos factoriales. |
CB1 CB2 CB3 CB5 CE1 CE2 CE3 CE4 CE5 CE6 CG1 CG3 | R2 R3 |
Tema 4. Anillos de polinomios. Cuerpos. |
CB1 CB2 CB3 CB5 CE1 CE2 CE3 CE4 CE5 CE6 CG1 CG3 | R2 R3 R1 |
Tema 5. Grupos: elementos básicos. |
CB1 CB2 CB3 CB5 CE1 CE2 CE3 CE4 CE5 CE6 CG1 CG3 | R2 R3 |
Tema 6. Homomorfismos de grupos. |
CB1 CB2 CB3 CB5 CE1 CE2 CE3 CE4 CE5 CE6 CG1 CG3 | R2 R3 |
Tema 7. Grupos de permutaciones. |
CB1 CB2 CB3 CB5 CE1 CE2 CE3 CE4 CE5 CE6 CG1 CG3 | R2 R3 |
Bibliografía
Bibliografía Básica
E. Bujalance, J.J. Etayo, J.M. Gamboa, "Teoría Elemental de grupos", Cuadernos de la UNED, 1989.
E. Bujalance, J.J. Etayo, J.M. Gamboa, "Anillos y cuerpos'', Cuadernos de la UNED, 1989.
S. Lang, "Algebra'', Aguilar, Madrid, 1971.
E. Pardo, Apuntes de Estructuras algebraicas, UCA.
A. del Río, J.J. Simón, A. del Valle, "Álgebra Básica, Texto-Guía. Universidad de Murcia, 2001.
Bibliografía Específica
M.A. Amstrong, "Groups and Symmetry", Undergraduate Texts in Mathematics, Springer-Verlag,
New York, 1988.
P. Dubreil, "Teoría de grupos'', Reverte, Barcelona, 1975.
I.N. Herstein, "Topics in Algebra'', 2nd edition, John Wiley and Sons, London, 1975.
T.W. Hungerford, "Algebra'', Graduate Text in Mathematics, 7, Springer-Verlag, Berlin, 1974.
M.A. Moreno Frías, E. Pardo, "Teoría de Grupos'', Servicio de Publicaciones de la UCA, 2003.
Bibliografía Ampliación
M.F. Atiyah, I.G. MacDonald, "Introducción al Algebra Conmutativa'', Ed. Reverté, 1980.
P.M. Cohn, "Algebra'', vol.I, II, III, John Wiley and Sons, London, 1973.
E. Nart, "Grups abelians finitament generats i formes quadràtiques'', Publ.UAB, 1995.
J.J. Rotman, "An introduction to the Theory of Groups'', Graduate Texts in Mathematics, 48, 4th edition, Springer-Verlag, Berlin, 1994.
T. Sánchez Giralda, "Algebra conmutativa y homológica I'', Publ. Universidad de Valladolid, 1996.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.