Fichas de asignaturas 2014-15
![]() |
AMPLIACIÓN DE MATEMÁTICAS |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 21716011 | AMPLIACIÓN DE MATEMÁTICAS | Créditos Teóricos | 4.5 |
Título | 21716 | GRADO EN INGENIERÍA AEROESPACIAL | Créditos Prácticos | 3 |
Curso | 2 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
Recomendaciones
Dominar los conocimientos adquiridos en las asignaturas de primer curso Cálculo y Álgebra y Geometría.
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
MARÍA ALICIA | CORNEJO | BARRIOS | PROFESOR TITULAR DE ESCUELA | N |
![]() |
LUIS | LAFUENTE | MOLINERO | PROFESOR CONTRATADO DOCTOR | S |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; Estadística y optimización | ESPECÍFICA |
CB1 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. | GENERAL |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. | GENERAL |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. | GENERAL |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado. | GENERAL |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. | GENERAL |
CT1 | Trabajo en equipo: capacidad de asumir las labores asignadas dentro de un equipo, así como de integrarse en él y trabajar de forma eficiente con el resto de sus integrantes. | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R1 | 1. Ser capaz de identificar campos conservativos y resolver integrales curvilíneas. |
R2 | 2. Ser capaz de resolver integrales de superficie y aplicar cambios de variable en este tipo de integrales. |
R3 | 3. Ser capaz de resolver ecuaciones diferenciales ordinarias de órdenes primero y segundo. |
R4 | 4. Ser capaz de resolver sistemas de ecuaciones diferenciales. |
R5 | 5. Conocer y saber aplicar la transformada de Laplace. |
R6 | 6. Ser capaz de aplicar métodos numéricos para la resolución de ecuaciones y sistemas de ecuaciones diferenciales. |
R7 | 7. Iniciar el estudio de ecuaciones diferenciales en derivadas parciales y analizar la ecuación de ondas, la del calor y la de Laplace. |
R8 | 8. Conocer aspectos básicos del Cálculo de variable compleja. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: Clases teóricas. MÉTODO DE ENSEÑANZA APRENDIZAJE: Método expositivo. Lección magistral. En estas clases el profesor presenta los contenidos básicos correspondientes a las unidades temáticas seleccionadas. Asimismo, se resuelven ejercicios que ayuden a afianzar los conocimientos teóricos y se proponen ejercicios y problemas para ser resueltos por los alumnos. |
36 | B01 CB1 CB2 CB3 CB4 CB5 | |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases prácticas. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. En estas clases se desarrollan actividades de aplicación de los conocimientos adquiridos a problemas concretos que permitan ampliar y profundizar en dichos conocimientos. Los alumnos podrán trabajar individualmente o en grupos pequeños. |
12 | B01 CB1 CB2 CB3 CB4 CB5 | |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de Informática. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas. En estas clases los estudiantes resolverán un conjunto de problemas utilizando las aplicaciones informáticas de un programa de cálculo simbólico y analizarán los resultados obtenidos. |
12 | B01 CB1 CB2 CB3 CB4 CB5 CT1 | |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual/autónomo. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Contrato de aprendizaje. Estas sesiones contemplan el trabajo realizado por el alumno para comprender los contenidos impartidos en clases teóricas, en clases de problemas y en prácticas con ordenador. Asimismo, se contempla la búsqueda bibliográfica necesaria para el mejor estudio. |
76 | Reducido | B01 CB1 CB2 CB3 CB4 CB5 |
11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y seminarios. Sesiones dedicadas a orientar al alumno sobre cómo abordar la resolución de ejercicios y problemas relativos al desarrollo de la asignatura. |
8 | Reducido | B01 CB1 CB2 CB3 CB4 CB5 |
12. Actividades de evaluación | ACTIVIDADES DE EVALUACIÓN. Sesiones donde se realizan las diferentes pruebas de progreso periódico. |
6 | Grande | B01 CB1 CB2 CB3 CB4 CB5 |
Evaluación
Criterios Generales de Evaluación
El sistema de evaluación se realizará de acuerdo con la normativa propia de la Universidad de Cádiz. No obstante, los criterios específicos de calificación dependerán de las pruebas de evaluación concretas. Así, la calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Realización de pruebas de progreso. | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura. |
|
B01 CB1 CB2 CB3 CB4 CB5 |
Realización de una prueba final. | Prueba escrita compuesta por ejercicios de conocimientos teóricos y prácticos. |
|
B01 CB1 CB2 CB3 CB4 CB5 |
Trabajo de realización de las pruebas de informática. | Análisis documental/Rúbrica de valoración de documentos. |
|
B01 CB1 CB2 CB3 CB4 CB5 CT1 |
Procedimiento de calificación
A mediados del semestre se realizará una prueba de progreso eliminatoria de materia, se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. La Junta de Escuela establecerá la fecha y el lugar de realización del examen final, en dicho examen todos los alumnos realizaran un examen de la segunda parte de la asignatura y aquellos que no hubieran superado la prueba de progreso anterior, deberán realizar un examen de dicha materia. La calificación de estas pruebas supondrá el 90% de la calificación global de la asignatura. El trabajo de realización de las Prácticas de Informática tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado, y supondrá un 10% de la calificación global de la asignatura. Se valorará la asistencia y aprovechamiento. Las notas correspondientes a las prácticas de ordenador se sumarán cuando se hayan superado las pruebas de progreso. Se considerará que han adquirido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
Tema 01.- Introducción a las ecuaciones diferenciales. Definiciones, conceptos fundamentales y notaciones.- Soluciones. Tipo de soluciones.- Clasificación de las ecuaciones diferenciales.- Origen y aplicación de las ecuaciones diferenciales: Familias de curvas.- Nociones generales sobre los problemas de existencia y unicidad de las soluciones. Tema 02.- Ecuaciones diferenciales de primer orden. Teoremas de existencia y unicidad de soluciones.- Interpretación geométrica de la ecuación y'=f(x,y).- Ecuaciones diferenciales con variables separadas y reducibles a ellas.- Ecuaciones homogéneas y reducibles a ellas.- Ecuaciones diferenciales exactas: Factor integrante.- Ecuaciones lineales. Reducibles a lineales.- Trayectorias ortogonales e isogonales. Tema 03.- Ecuaciones lineales de orden superior. Introducción a las ecuaciones diferenciales lineales de orden superior.- Ecuación lineal homogénea. Tratamiento vectorial del conjunto de soluciones.- Reducción del orden.- Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Resolución.- E.D.O. lineal completa de segundo orden. Resolución: Método de variación de constantes y método de los coeficientes indeterminados.- E.D.O. lineal con coeficientes variables: Ecuación de Euler.- Otros cambios de variable en ecuaciones lineales con coeficientes variables.- Aplicaciones: Vibraciones en sistemas mecánicos y eléctricos. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R3 |
Tema 04.- Sistemas de ecuaciones diferenciales ordinarias. Definición.- Sistemas lineales de primer orden homogéneos y no homogéneos.- Sistemas lineales con coeficientes constantes.- Sistema de dos ecuaciones diferenciales autónomo.- Diagrama de fases. Puntos críticos.- Estabilidad en un punto crítico.- Estabilidad en sistemas autónomos lineales homogéneos y no homogéneos. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R4 |
Tema 05.- Transformada de Laplace. Definición.- Cálculo de transformadas de funciones elementales.- Propiedades.- Transformada inversa y transformadas de derivadas.- Teoremas de traslación.- Producto de convolución. Transformada de Laplace del producto de convolución.- Aplicación de la transformada a la resolución de ecuaciones diferenciales e integrales y sistemas de ecuaciones diferenciales lineales. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R5 |
Tema 06.- Introducción a las ecuaciones diferenciales en derivadas parciales. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R7 |
Tema 07.- Métodos numéricos para resolver EDO. Método de Euler.- Métodos de Taylor de orden n.- Métodos de Runge-Kutta. Runge-Kutta de orden 4. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R6 |
Tema 08.- Campos escalares y vectoriales. Definiciones.- Gradiente de un campo escalar. Propiedades.- Divergencia de un campo vectorial. Campo solenoidal.- Rotacional de un campo vectorial. Campo conservativo.- Laplaciano de un campo escalar. Tema 09.- Integral de línea. Definición.- Propiedades.- Cálculo de la integral curvilínea.- Campo conservativo. Función potencial. Caracterización.- Teorema de Green en el plano. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R1 |
Tema 10.- Integral de superficie. Área de una superficie dada en forma explícita y en forma paramétrica.- Elementos de superficie.- Integral de superficie.- Cálculo de integrales de superficie.- Teorema de Stokes.- Flujo de un campo vectorial.- Teorema de la divergencia o de Gauss-Ostrogradski. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R2 |
Tema 11.- Introducción al Cálculo de variable compleja. Funciones analíticas.- Teorema de Cauchy.- Representaciones por series de funciones analíticas.- Cálculo de residuos. |
B01 CB1 CB2 CB3 CB4 CB5 CT1 | R8 |
Bibliografía
Bibliografía Básica
D. G. Zill.
Ecuaciones Diferenciales con aplicaciones de modelado (7ª edición).Ed. Thomson.
A.García, F. García, A. López, G. Rodríguez, A. De La Villa
Ecuaciones diferenciales ordinarias (Teoría y Problemas). Ed. Glagsa
A.García, A. López, G. Rodríguez, S. Romero, A. De La Villa
Cálculo II (Teoría y problemas de funciones de varias variables)(SEgunda edición). Ed. Glagsa
F. Simmons.
Ecuaciones Diferenciales.Ed. Mc Graw-Hill.
J. Martínez Salas.
Métodos Matemáticos. Valladolid.
L. Elsgoltz.
Ecuaciones diferenciales y cálculo variacional. Ed. Mir.
Krasnov,Kiseliov y otros.
Curso de Matemáticas superiores para ingenieros. Ed. Mir.
E. D. Rainville.
Ecuaciones diferenciales elementales. Ed. Trillas.
Kiseliov,Krasnov,Makarenko.
Problemas de ecuaciones diferenciales. Ed. Mir.
J. E. Marsden y M. J. Hoffman
Basic Complex Analysis, W. H. Freeman & Co Ltd., New York.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.