Fichas de asignaturas 2014-15
![]() |
ÁLGEBRA Y GEOMETRÍA |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 40210002 | ÁLGEBRA Y GEOMETRÍA | Créditos Teóricos | 3.75 |
Título | 40210 | GRADO EN INGENIERÍA QUÍMICA | Créditos Prácticos | 3.75 |
Curso | 1 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Ninguno.
Recomendaciones
Saber manipular los conceptos incluidos en las matemáticas del bachillerato científico-tecnológico facilitará la comprensión de los contenidos de esta asignatura.
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
LORETO DEL | AGUILA | GARRIDO | Profesor Titular Escuela Univ. | S |
![]() |
JESUS | BEATO | SIRVENT | Profesor Asociado | N |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vacación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | BÁSICA |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | BÁSICA |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | BÁSICA |
CE2 | Resolver problemas matemáticos que puedan plantearse en la ingeniería | ESPECÍFICA |
CE3 | Aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización | ESPECÍFICA |
CG1 | Capacidad de análisis y síntesis | GENERAL |
CG4 | Capacidad para la gestión de datos y la generación de información /conocimiento | GENERAL |
CG5 | Capacidad para la resolución de problemas | GENERAL |
CG7 | Capacidad para trabajar en equipo | GENERAL |
CG8 | Capacidad de razonamiento crítico | GENERAL |
CT1 | Capacidad de organización y planificación | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R1 | Utilizar los fundamentos matemáticos necesarios para poder entender y tratar de una manera rigurosa aquellos aspectos de la ingeniería que no son meramente conceptuales y que necesitan de herramientas matemáticas operativas. |
R3 | Utilizar los métodos numéricos para la resolución de problemas. Manejar los algoritmos básicos que permiten aplicar los métodos numéricos computacionalmente. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | Se enseñan los contenidos y se presentan problemas que ayuden a comprender las nociones introducidas. |
30 | Grande | |
02. Prácticas, seminarios y problemas | El profesor resuelve ejercicios y problemas sobre la materia estudiada y propone a los alumnos, por grupos, la resolución de otros. |
15.04 | Mediano | |
03. Prácticas de informática | Sesiones en las que los alumnos utilizarán una herramienta informática para realizar cálculos y representaciones gráficas. |
14.96 | Reducido | |
10. Actividades formativas no presenciales | Por grupos, los alumnos deberán realizar un trabajo de investigación dirigida por el profesor, sobre uno de los temas propuestos al principio del semestre, elaborar un ensayo y presentarlo telemáticamente al profesor. Los temas sobre los que versarán estos trabajos serán: historia del álgebra y la geometría, frisos y mosaicos. |
20 | Reducido | |
12. Actividades de evaluación | Realización de exámenes. |
10 | Grande | |
13. Otras actividades | Estudio personal -tanto individual como en grupo- de los contenidos de la asignatura. |
60 | Grande |
Evaluación
Criterios Generales de Evaluación
La calificación se obtiene a partir de las puntuaciones en cada actividad.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Realización de pruebas de progreso. | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura. |
|
|
Realización de una prueba final. | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura. |
|
|
Test o prueba de conocimientos básicos. | Prueba objetiva de elección múltiple (test)/ Análisis documental (prueba de conocimientos básicos). |
|
|
Trabajo de realización de las prácticas de informática. | Análisis documental/ Rúbrica de valoración de documentos. |
|
Procedimiento de calificación
Las pruebas de progreso supondrán un 70% de la calificación global de la asignatura y serán usualmente escritas. Los test o las pruebas de conocimientos básicos supondrán un 10% de la calificación global de la asignatura, y podrán ser propuestos y a realizar en el aula o a través del campus virtual. La realización de las prácticas de informática supondrá un 20% de la calificación global de la asignatura, y consistirá en la resolución de diferentes ejercicios con el correspondiente software, que supondrá un 10% de la calificación global de la asignatura (la nota obtenida en esta parte se conservará en las distintas convocatorias del curso correspondiente y, en caso de no superar la asignatura, en sucesivas convocatorias de los sucesivos cursos) y una prueba final de prácticas que supondrá un 10% de la calificación global de la asignatura (en caso de superar esta prueba, la nota se conservará sólo en las convocatorias del curso correspondiente). Se valorará positivamente la asistencia a clase. El alumno que no supere una o más de una de las pruebas de progreso deberá realizar un examen final que se valorará de la misma forma que las pruebas de progreso, y supondrá un 70% de la calificación global. El alumno que no supere la prueba de prácticas, realizará un examen final que supondrá un 10% de la calificación global. La Facultad establecerá la hora y el lugar de la realización de estos exámenes. Se considerará que han adquirido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
01. MATRICES Y DETERMINANTES. Definición de matriz.- Operaciones lineales con matrices.- Producto de matrices.- Matriz traspuesta. Propiedades.- Tipos de matrices.- Matriz inversa. Unicidad y propiedades.- Operaciones elementales. Matrices elementales.- Matrices equivalentes.- Forma canónica de Hermite.- Método de Gauss-Jordan para el cálculo de la inversa de una matriz.- Rango de una matriz.- Cálculo del rango mediante operaciones elementales.- Definición y propiedades del determinante de una matriz cuadrada.- Aplicación de los determinantes. |
R1 R-01 | |
02. SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES. Terminología y notaciones.- Sistemas equivalentes.- Método de eliminación de Gauss.- Teorema de Rouché-Fröbenius.- Sistemas homogéneos: Espacio nulo de una matriz.- Resolución de sistemas: métodos directos e iterativos. |
R1 R-01 | |
03. Espacio vectorial R^n. Definición y propiedades. Dependencia e independencia lineal. Propiedades. Base y dimensión del espacio vectorial R^n. Coordenadas de un vector. Cambio de base en R^n. Subespacios vectoriales. Caracterización. Ecuaciones de un subespacio. Base y dimensión de un subespacio. |
R1 R-01 | |
04. Espacio vectorial euclídeo R^n. Producto escalar. Módulo de un vector y ángulo entre vectores. Bases ortogonales y ortonormales. Método de ortonormalización de Gram-Schmidt. |
R1 R-01 | |
05. Diagonalización de matrices. Autovalores y autovectores de una matriz cuadrada. Propiedades. Matriz diagonalizable. Diagonalización. Diagonalización de matrices simétricas por semejanza ortogonal. Potencias de una matriz diagonalizable. Forma canónica de Jordan para matrices de orden dos y tres. |
R1 R-01 | |
06. Cónicas. Definición de cónica. Ecuación matricial. Ecuación reducida de una cónica. Clasificación y elementos principales de las cónicas. Es1tudio de las cónicas ordinarias. |
R1 R-01 | |
07. Cuádricas. Definición de cuádrica. Ecuación matricial. Ecuación reducida de una cuádrica. Clasificación de las cuádricas. Estudio de las cuádricas ordinarias. |
R1 R-01 | |
08. Curvas planas. Concepto de curva plana. Expresiones de una curva: paramétrica, explícita e implícita. Tangente y normal en un punto de una curva. Puntos singulares y puntos ordinarios. Curvas planas en coordenadas polares. |
R1 R-01 | |
09. Curvas alabeadas. Definición de curva en el espacio. Ecuaciones de una curva. Punto ordinario y punto singular. Longitud de un arco de curva. Triedro y fórmulas de Frenet. Recta tangente, normal y binormal. Curvatura y torsión. Plasnos osculador, normal y rectificante. |
R1 R-01 | |
10. Superficies. Concepto de superficie. Plano tangente y recta normal a una superficie. Superficies de revolución y de traslación. Superficies cónicas y cilíndricas. |
R1 R-01 R3 |
Bibliografía
Bibliografía Básica
Merino, L., Santos, E. (2006): Álgebra Lineal con métodos elementales. Thomson Paraninfo.
de Burgos, J. (2006): Álgebra Lineal y Geometría Cartesiana. McGraw-Hill.
Grossman, S. (2007): Álgebra Lineal con aplicaciones. McGraw-Hill.
de la Villa, A. (1998): Problemas de Álgebra con esquemas teóricos. Clagsa.
López, A., de la Villa, A. (1997): Geometría Diferencial. Clagsa.
Costa, A., Gamboa, M., Porto, A. (2005): Notas de Geometría Diferencial de Curvas y Superficies. Sanz y Torres.
Costa, A., Gamboa, M., Porto, A. (2005): Ejercicios de Geometría Diferencial de Curvas y Superficies. Sanz y Torres.
Ariza, O., Camacho, J. C., Sánchez, A.: Álgebra Lineal y Geometría en Escuelas Técnicas. Editan los autores.
de Burgos, J.: Curso de Álgebra y Geometría. Alambra-Longman.
de Diego, B., Gordillo, E., Valeiras, G.: Problemas de Álgebra Lineal. Deimos.
Raya, A., Rider, A., Rubio, R.: Álgebra y Geometría lineal. Reverté.
Bibliografía Ampliación
Castellet, M., Llerena, I. (1994): Álgebra Lineal y Geometría. Reverté.
Rojo, J., Martín, I. (1994): Ejercicios y problemas de Álgebra Lineal. McGraw-Hill.
Arvesú, J., Marcellán, F., Sánchez, J. (2007): Problemas Resueltos de Álgebra Lineal. Paraninfo.
Cordero, L., Fernández, M., Gray, A. (1995): Geometría Diferencial de Curvas y Superficies. Addison-Wesley.
García, J. L. (2005): Test de Álgebra Lineal. AC.
Bolos, V. (2007): Álgebra Lineal y Geometría. Universidad de Extremadura.
Sanz, P., Vázquez, F. J., Ortega, P.: Álgebra lineal. Cuestiones, ejercicios y tratamiento en DERIVE. Prentice Hall.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.