Fichas de asignaturas 2014-15
![]() |
ÁLGEBRA Y GEOMETRIA |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 41413002 | ÁLGEBRA Y GEOMETRIA | Créditos Teóricos | 5 |
Título | 41413 | GRADO EN INGENIERÍA MARINA | Créditos Prácticos | 2.5 |
Curso | 1 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
Requisitos previos
El plan de estudios no establece ningún prerrequisito para cursar esta asignatura.
Recomendaciones
Haber cursado el bachillerato científico tecnológico.
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B1 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmicos numéricos; estadísticos y optimización | GENERAL |
B3 | Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos con aplicación en ingeniería | GENERAL |
E1 | Capacidad para el aprendizaje de nuevos métodos y teorías, que le doten de una gran versatilidad para adaptarse a nuevas situaciones | ESPECÍFICA |
E2 | Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos habilidades y destrezas | ESPECÍFICA |
Resultados Aprendizaje
Identificador | Resultado |
R2 | Dominar los conceptos básicos de los espacios vectoriales y de los espacios vectoriales euclídeos de dimensión finita. |
R1 | Haber aprendido a operar con matrices, determinantes y sistemas lineales principalmente mediante las operaciones elementales. |
R5 | Llegar a aprender los conceptos básicos de la geometría diferencial de curvas alabeadas. Llegar a conocer las suferficies cónicas. |
R3 | Llegar a saber calcular los valores y vectores propios de una matriz cuadrada y a obtener su forma canónica de Jordan. |
R4 | Saber reducir la ecuación de una cónica o de una cuádrica. Llegar a saber dibujar la cónica y a clasificar la cuádrica. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: clases teóricas. MÉTODO EXPOSITIVO: lección magistral. El profesor presenta los contenidos básicos sobre los temas, se resuelven ejercicios que refuercen los conocimientos teóricos y se proponen ejercicios y problemas para ser resueltos por el alumno. |
40 | Grande | E1 |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: clases prácticas. MÉTODO de ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. Los alumnos podrán trabajar individualmente o en grupitos. |
10 | Mediano | B1 E2 |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de Informática. METODO de ENSEÑANZA-APRENDIZAJE: En estas sesiones se resuelven los ejercicios y problemas de las prácticas anteriores y otros similares con mayor dimensión y volumen de cuentas. |
10 | Reducido | B1 B3 E2 |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual. MÉTODO de ENSEÑANZA-APRENDIZAJE: son sesiones de trabajo del alumno para comprender los contenidos impartidos en las clases teóricas, en clases de problemas y en las prácticas de ordenador. El alumno tendrá que hacer eventualmente consultas bibliográficas. |
78 | Reducido | B1 E1 E2 |
11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y seminarios. Sesiones dedicadas a orientar al alumno sobre cómo abordar la resolución de ejercicios y problemas relativos al desarrollo de la asignatura. |
6 | Reducido | B1 E1 E2 |
12. Actividades de evaluación | Sesiones donde se realizan las diferentes pruebas de progreso periódico del alumno. |
6 | Grande | B1 E1 E2 |
Evaluación
Criterios Generales de Evaluación
Criterios Generales de Evaluación La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Prueba final. | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura. |
|
B1 E1 E2 |
Prueba informática. | Trabajo de realización de las pruebas de informática. |
|
B1 E1 E2 |
Pruebas de progreso. | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura. |
|
B1 E1 E2 |
Procedimiento de calificación
Se evaluará tanto la realización de diversas actividades que se propondrán en el aula, las pruebas de progreso que se realizarán a lo largo del curso, y la participación activa del alumno mediante la entrega de tareas. En las pruebas de progreso se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. Estas pruebas serán usualmente escritas. Supondrán un 80% de la calificación global de la asignatura. Las pruebas de conocimientos básicos supondrán un 10% de la calificación global de la asignatura, y podrán ser propuestas y a realizar en el aula o través del Campus Virtual. El trabajo de realización de las prácticas de informática tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado, y supondrá un 10% de la calificación global de la asignatura. El alumno que no supere una, o más de una, de las pruebas de progreso anteriores, deberá realizar un examen final que se valorará de la misma forma que las pruebas de progreso (suponiendo un 80% de la calificación final), siendo la Junta de Facultad quien establezca la fecha y el lugar de realización. Se considerará que han adquirido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
BLOQUE 1.- MATRICES, DETERMINANTES Y SISTEMAS Tema 1.- Matrices y Determinantes Definición de matriz.- Operaciones lineales con matrices.- Producto de matrices.- Matriz traspuesta. Propiedades.- Tipos de matrices.- Matriz inversa. Unicidad y propiedades.- Operaciones elementales. Matrices elementales.- Matrices equivalentes.- Forma canónica de Hermite.- Método de Gauss-Jordan para el cálculo de la inversa de una matriz.- Rango de una matriz.- Cálculo del rango mediante operaciones elementales.- Definición y propiedades del determinante de una matriz cuadrada.- Aplicación de los determinantes. Tema 2.- Sistemas de Ecuaciones Lineales y no Lineales Terminología y notaciones.- Sistemas equivalentes.- Método de eliminación de Gauss.- Teorema de Rouché-Fröbenius.- Sistemas homogéneos: Espacio nulo de una matriz.- Resolución de sistemas: métodos e iterativos. |
B1 E1 E2 | R1 |
BLOQUE 2.- ESPACIO VECTORIAL Y EUCLIDEO Tema 3.- Espacio Vectorial R n Definición y propiedades.- Dependencia e independencia lineal. Propiedades.- Base y dimensión del espacio vectorial Rn.- Coordenadas de un vector.- Cambio de base en Rn.- Subespacios vectoriales. Caracterización.- Ecuaciones de un subespacio.- Base y dimensión de un subespacio. Tema 4.- Espacio Vectorial Euclídeo R n Producto escalar.- Módulo de un vector y ángulo entre vectores.- Bases ortogonales y ortonormales.- Método de ortonormalización de Gram-Schmidt. |
B1 E1 E2 | R2 |
BLOQUE 3.- DIAGONALIZACIÓN DE MATRICES. Tema 5.- Diagonalización de Matrices Autovalores y autovectores de una matriz cuadrada.- Propiedades.- Matriz diagonalizable: Diagonalización.- Diagonalización de matrices simétricas por semejanza ortogonal. Potencias de una matriz diagonalizable.- Forma Canónica de Jordan para matrices de orden dos y tres. |
B1 E1 E2 | R3 |
BLOQUE 4.- CÓNICAS Y CUÁDRICAS Tema 6.- Cónicas Definición de cónica. Ecuación matricial.- Ecuación reducida de una cónica.- Clasificación y elementos principales de las cónicas.-Estudio de las cónicas ordinarias. Tema 7.- Cuádricas Definición de cuádrica. Ecuación matricial.- Ecuación reducida de una cuádrica.- Clasificación de las cuádricas.- Estudio de las cuádricas ordinarias. |
B1 E1 E2 | R4 |
BLOQUE 5.- CURVAS Y SUPERFICIES Tema 8.- Curvas Planas Concepto de curva plana.- Expresiones de una curva: paramétrica, explícita e implícita.- Tangente y normal en un punto de una curva.- Puntos singulares y puntos ordinarios.- Curvas planas en coordenadas polares. Tema 9.- Curvas Alabeadas Definición de curva en el espacio.- Ecuaciones de una curva.- Punto ordinario y punto singular.- Longitud de un arco de curva.- Triedro y Fórmulas de Frenet.- Recta tangente, normal y Binormal.- Curvatura y torsión.- Planos osculador, normal y rectificante. Tema 10.- Superficies Concepto de superficie.- Plano tangente y recta normal a una superficie.- Superficies de revolución y de traslación.- Superficies cónicas y cilíndricas. |
B1 E1 E2 | R5 |
Bibliografía
Bibliografía Básica
Anton, Howard. Introducción al Algebra Lineal. Ed. Limusa. Mexico 1998.
De la Villa, A. Problemas de Álgebra con esquemas teóricos
. Ed. Clagsa, Madrid 1998.
Merino, L. y Santos, E. Álgebra Lineal con métodos elementales
. Ed. Thomson Paraninfo, Madrid 2006.
De Burgos, J. Álgebra Lineal y Geometría Cartesiana. McGraw-Hill. Madrid 2006.
Grossman, S. Álgebra lineal con aplicaciones. Ed. McGraw-Hill. Mexico 2007.
López, A. y De la Villa, A. Geometría Diferencial. Ed. Clagsa, Madrid 1997.
Costa, A.; Gamboa, M. y Porto, A. Notas de Geometría Diferencial de Curvas y Superficies. Ed. Sanz y Torres, Madrid 2005.
Ariza, O.; Camacho, J.C. y Sánchez, A. Álgebra lineal y Geometría en Escuelas Técnica. Ed.Los Autores.2000.
De Burgos, J. Curso de Álgebra y Geometría. Ed. Alhambra Longman, Madrid 1994.
De Diego, B.; Gordillo, E. y Valeiras, G. Problemas de Álgebra Lineal. Ed. Deimos. 1986.
Rubio, R.; Ríder, A. y Raya, A. Álgebra y Geometría lineal. Ed. Reverte, Madrid 2007.
Costa, A., Gamboa, M., Porto, A. Ejercicios de Geometría Diferencial de Curvas y Superficies. Ed. Sanz y Torres, Madrid 2005.
Bibliografía Específica
Bibliografía Ampliación
Rojo, J. y Martín, I. Ejercicios y Problemas de Álgebra Lineal. Ed McGraw-Hill, Madrid 1994.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.