Usted está aquí: Inicio web asignaturas

 

Fichas de asignaturas 2015-16


ELECTRÓNICA ANALÓGICA

Asignaturas
 

  Código Nombre    
Asignatura 10618033 ELECTRÓNICA ANALÓGICA Créditos Teóricos 5.25
Título 10622 GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES - ALGECIRAS Créditos Prácticos 2.25
Curso   3 Tipo Obligatoria
Créd. ECTS   6    
Departamento C140 INGENIERIA EN AUTOMÁTICA, ELECTRÓNICA, ARQUITECTURA Y REDES DE COMPUTADORES    

 

Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:

 

Requisitos previos

Es imprescindible que el alumno haya adquirido las competencias correspondientes
a las materias del primer curso tales como Física I, Física II, Cálculo y
Álgebra. Asimismo y consecuentemente, es imprescindible haber adquirido las
competencias propias del segundo curso, ligadas a las materias de Electrónica y
Automática.

 

Recomendaciones

El alumno debe estudiar y trabajar de forma continuada sobre los contenidos de la
asignatura, de manera que el esfuerzo y la constancia se convierten en variables
claves para la superación de esta materia.

 

Profesorado

Nombre Apellido 1 Apellido 2 C.C.E. Coordinador  
AGUSTIN AGÜERA PEREZ Prof. Investigador de Área Deficitaria N
JOSE CARLOS PALOMARES SALAS Profesor Investigador de Área Deficitaria S

 

Competencias

Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.

Identificador Competencia Tipo
CB2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio GENERAL
CB3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética GENERAL
CB4 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado GENERAL
CB5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía GENERAL
CG1 Capacidad para la redacción, firma y desarrollo de proyectos en el ámbito de la ingeniería industrial que tengan por objeto, GENERAL
CG3 Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones. GENERAL
CG4 Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y GENERAL
CG6 Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento GENERAL
CT1 Capacidad para la resolución de problemas TRANSVERSAL
CT15 Capacidad para interpretar documentación técnica TRANSVERSAL
CT4 Capacidad de aplicar los conocimientos en la práctica. TRANSVERSAL
CT7 Capacidad de análisis y síntesis TRANSVERSAL
EI02 Conocimiento de los fundamentos y aplicaciones de la electrónica analógica. ESPECÍFICA OPTATIVA
EI06 Capacidad para diseñar sistemas electrónicos analógicos, digitales y de potencia. ESPECÍFICA OPTATIVA

 

Resultados Aprendizaje

Identificador Resultado
R2 Análisis y diseño de circuitos electrónicos con transistores y con amplificadores operacionales
R3 Capacidad para resolver problemas propios de la Electrónica, aprovechando los conocimientos transversales adquiridos de otras disciplinas científicas.
R4 Desarrollar habilidades de tipo práctico que le permitan dominar en un futuro la resolución de problemas reales propios de su especialidad y responsabilidad en el desarrollo de su profesión.
R1 Reconocer la importancia y el aporte que supone la utilización de la Electrónica en la actualidad y su importancia en el terreno de la industria para enriquecer su formación como profesional en cualquiera de las especialidades del grado.

 

Actividades formativas

Actividad Detalle Horas Grupo Competencias a desarrollar
01. Teoría
-Modalidad organizativa: clases teóricas.
-Método de enseñanza-aprendizaje: método
expositivo/lección magistral. En el contexto de
esta modalidad organizativa y mediante el método
de enseñanza-aprendizaje indicado se impartirán
las unidades teóricas correspondientes a los
contenidos de la asignatura.
30 CB2 CB3 CB4 CB5 CG1 CG3 CT1 CT7 EI02 EI06
04. Prácticas de laboratorio
- Modalidad organizativa: clases prácticas.
- Método de enseñanza-aprendizaje: estudio de
problemas y casos prácticos de diseño de
topologías propias de la electrónica analógica.
Como optimización del proceso de aprendizaje,
estos resultados pueden ser los planteamientos de
partida de algunas prácticas de laboratorio,
aportando toda la documentación requerida, según
los casos, antes de la experiencia.

- Modalidad organizativa: prácticas de
laboratorio.
- Método de enseñanza-aprendizaje: diseño,
análisis y montaje de circuitos y/o simulación
por ordenador. La actividad estará orientada a
pequeños grupos con el material e instrumentación
adecuados y secuenciada mediante un guion
conocido a priori. Según cada tipo de
experiencia, puede requerirse que el alumno
trabaje aportando una serie de resultados previos
antes de la realización de la experiencia para
proceder a su comprobación, o, -en otros casos.-
confección de un análisis posterior en función de
los resultados instrumentales obtenidos de la
experimentación. Dichos resultados y sus
conclusiones formarán parte de la evaluación
continua del alumnado en esta actividad de tipo
práctico.
18 CB2 CB3 CB4 CB5 CG1 CG3 CG4 CG6 CT1 CT15 CT4 CT7 EI02 EI06
08. Teórico-Práctica
Estudio de casos, simulación por ordenador si
procede, montaje de circuitos y comprobación de
especificaciones.
12 CB2 CB4 CB5 CG4 CT1 CT15 CT4 CT7 EI02 EI06
10. Actividades formativas no presenciales
Estudio individual y trabajo autónomo sobre los
contenidos de la asignatura. El alumno tiene la
posibilidad de trabajar en el laboratorio y en el
ordenador con el simulador electrónico.
82 Grande CB2 CB3 CT1 CT15 CT4 CT7 EI06
11. Actividades formativas de tutorías
Atención personal (sin exclusión de la
posibilidad de atención a grupos en situaciones
puntuales) al alumno con el fin de asesorarlo
sobre los distintos aspectos relativos al
desarrollo de la asignatura.
4 Reducido CB2 CB3 CB4 CB5 CG3 CT1 CT4 CT7 EI02 EI06
12. Actividades de evaluación
Examen final (ver Procedimiento de Evaluación).
- En esta actividad formativa se puede contemplar
la realización de controles optativos si así lo
requiriesen los contenidos.
4 Grande CB3 CB4 CB5 CT1 CT15 CT4 CT7 EI02 EI06

 

Evaluación

Criterios Generales de Evaluación

- Evaluación de las clases de laboratorio: a partir de los resultados  aportados
(documentación, informes, memorias, diseños, etc.), tras las sesiones prácticas
que así lo requieran o asistencia en los casos de difícil evaluación por otro
método. Se valorará no sólo la corrección de los resultados, sino también otros
detalles que permitan la evaluación de competencias transversales, como las
exposiciones de los trabajos o ampliaciones de los mismos.

- En el examen final o cualquier otra prueba individual que se estime (controles)
se valorará, además del acierto esperado a las cuestiones, la exposición,
expresión y capacidad de síntesis de los conceptos. Igualmente se consideraran
positivamente las soluciones novedosas y originales que en ese momento aporte el
alumno a la resolución, siempre y cuando dichos métodos sean coherentes desde el
punto de vista científico-técnico y conlleven a soluciones acertadas o similares
respecto a los métodos expuestos en las clases.

- Evaluación de las competencias actitudinales: según los criterios del Espacio
Europeo de Educación Superior, la actitud del alumnado hacia la materia también
es una componente de evaluación. Se considerará, en general, que la asistencia
continuada a las clases de teoría, problemas y laboratorio supone el punto de
partida para poder desarrollar las competencias que se pretenden de la
especialidad. Por lo tanto, se establece obligatoria la presencia en este tipo de
actividades de los alumnos/as que cursen esta asignatura, con una asistencia
mínima de un 80% respecto del total de clases del semestre.

Sin embargo, dado que en casos particulares pudiera darse la circunstancia de
alumnos/as egresados que continúan cursando otras especialidades o que su
profesión le impida esta asiduidad, el método de evaluación escrita contemplará
un apartado extra que permita a dichas personas justificar que han desarrollado
adecuadamente las competencias oportunas así como presentar algún tipo de memoria
experimental, desarrollo de un caso práctico y/o resolución personal de problemas
adicionales que supla los contenidos dejados de recibir.

Por lo tanto, son elementos del sistema de evaluación los siguientes (algunos se
expandirán en el siguiente apartado):
a) Ejercicios de autoevaluación: imbricados en los temas de la asignatura.
b) Informes de trabajos grupales: resultados de prácticas de laboratorio.
c) Presentaciones de trabajos grupales.
d) Discusiones y coloquios en el aula: como consecuencia del proceso
enseñanza/aprendizaje, sobre todo al enseñar con el simulador electrónico y ver
in situ el progreso del alumno.
e) Informes o resultados de experimentos: prácticas de laboratorio individuales
de cada alumno.
f) Exámenes escritos u orales: su confección se expone en el siguiente apartado.
g) Presentación de resolución de casos: en el examen de prácticas de laboratorio,
cada alumno debe resolver un supuesto concreto práctico, un caso real de una
situación de medida.
h) Conferencias y seminarios: que pueden resultar de interés para los alumnos, y
que con frecuencia programamos en coordinación con empresas con las que
habitualmente trabajamos, como Instrumentos de Medida, S.L. (Madrid), o Agilent
Technologies, que nos mandan mucha información sobre seminarios que ellos
imparten, y sobre los cuales luego premiamos la asistencia del alumno y valoramos
su aprendizaje.
i) Otros: como la exposición opcional de algún supuesto práctico curioso de
ampliación que los alumnos hayan localizado o profundizado en él.

 

Procedimiento de Evaluación

Tarea/Actividades Medios, Técnicas e Instrumentos Evaluador/es Competencias a evaluar
Cuestionarios de Laboratorio Medida del aprovechamiento del trabajo en el laboratorio mediante exposición resumida acerca de la obtención de resultados teóricos preliminares, así como del procedimiento experimental seguido y los consecuentes resultados obtenidos.
  • Profesor/a
  • Autoevaluación
  • Co-Evaluación
CG3 CT15 CT4 CT7 EI02 EI06
Examen Prueba escrita que puede contemplar, según cada caso, la exposición sucinta de conceptos teóricos o explicaciones desarrolladas acerca de los contenidos impartidos por esta asignatura. Se podrán distinguir en este examen los siguientes elementos: 1. - Preguntas de teoría: Incluyen definiciones, pequeñas demostraciones y clasificaciones. 2. - Cuestiones experimentales. 3. - Problemas: Incluyen resolución numérica de casos prácticos o diseños específicos sobre circuitos electrónicos.
  • Profesor/a
CT1 CT4 EI02 EI06
Proyecto Desarrollo de un pequeño proyecto consistente en el diseño, montaje en formato prototipo y comprobación de un circuito típico de electrónica analógica. Este trabajo, PACTADO y realizado a lo LARGO DEL SEMESTRE, se puede solicitar a efectos de elevar las calificaciones obtenidas en el resto de las tareas evaluables.
  • Profesor/a
  • Co-Evaluación
CT1 CT15 CT4 CT7 EI02 EI06

 

Procedimiento de calificación

La calificación final de la asignatura se realizará de manera distinta según cada
actividad:

- Prácticas de laboratorio: 20% del total de la calificación, siendo obligatoria
tanto la asistencia como la presentación de los informes o resultados exigidos de
cada práctica. Dentro de esta calificación se contemplan, además, la evaluación
de los resultados de las actividades tales como cumplimiento de plazos,
participación, integración y actitud positiva en el aprendizaje.

- Examen: 80% para completar una puntuación total máxima de 10.0 puntos. Dentro
de este 80% se contemplarán controles y/o actividades anexas que justifiquen la
falta de asistencia de los casos excepcionales.

- Proyecto: hasta un máximo de 2 puntos adicionales a la calificación. La
puntuación adicional del proyecto se sumará siempre que la calificación total
obtenida por las otras actividades sea superior a 5 puntos, siendo la
calificación máxima final igual a 10 puntos en todo caso.

 

Descripcion de los Contenidos

Contenido Competencias relacionadas Resultados de aprendizaje relacionados
            a.TEMA 1. EL AMPLIFICADOR OPERACIONAL DE
PROPÓSITO GENERAL: CARACTERÍSTICAS
Y CONFIGURACIONES

1.1.     Amplificador diferencial. Curvas y
parámetros característicos.
1.2.     El AO. ideal.
1.2.1.   Modelo de Thêvenin.
1.2.2.   Ganancia de voltaje en lazo abierto.
Saturación. Concepto de \"cortocircuito
virtual\".
Realimentaciones negativa y positiva.
1.3.     El amplificador operacional de propósito
general 741.
1.3.1.   Símbolo, encapsulado, terminales y
esquema del circuito.
1.4.     Primeras experiencias con un
amplificador operacional.
1.4.1.   Aplicaciones básicas con realimentación
negativa.
1.4.1.1. Amplificadores inversor y no inversor.
Convertidor corriente-tensión.
Sumadores. Integrador. Derivador.
1.4.2.   Aplicaciones elementales sin
realimentación, en lazo abierto.
1.4.2.1. Detectores de nivel de voltaje positivo
y negativo.
1.5.     Estudio de las desviaciones más
importantes de la idealidad.
Limitaciones prácticas.
        
CG3 CT1 EI02 R2 R3 R1
            b.TEMA 2. CIRCUITOS COMPARADORES ELECTRÓNICOS
REGENERATIVOS. APLICACIONES DE
CONTROL ON-OFF

2.1.     Introducción.
2.2.     Efectos del ruido sobre los circuitos
comparadores.
2.3.     Realimentación positiva.
2.3.1.   Objetivos. Umbrales superior e inferior
de voltaje.
2.4.     Detector de cruce por cero con
histéresis.
2.4.1.   Definición de histéresis. Inmunización
contra el ruido.
2.5.     Detectores de nivel de voltaje con
histéresis.
2.5.1.   Introducción.
2.5.2.   Detector no inversor de nivel de voltaje
con histéresis.
2.5.3.   Detector inversor de nivel de voltaje
con histéresis.
2.6.     Regulación independiente del voltaje
central y del voltaje de histéresis.
2.6.1.   Introducción.
2.6.2.   Circuito de control de un cargador de
batería.
2.7.     Principios del control de procesos.
2.7.1.   El control todo-nada.
2.7.2.   El termostato como comparador.
2.8.     Detectores de ventana.
2.8.1.   Introducción.
2.8.2.   Posibles configuraciones.
        
CB2 CB3 CB5 CG3 CG4 CT1 CT15 CT4 CT7 EI02 EI06 R2 R3 R1
            c.TEMA 3. AMPLIFICADORES DIFERENCIALES, DE
INSTRUMENTACIÓN Y DE PUENTE

3.1.     Introducción.
3.2.     El amplificador diferencial básico.
3.2.1.   Función, análisis del circuito e
inconvenientes.
3.2.2.   Tensión de modo común.
3.2.3.   Comparación con el amplificador de una
sola entrada.
3.3.     Mejoras al amplificador diferencial
básico.
3.3.1.   Aumento de las resistencias de entrada.
3.3.2.   Amplificador con ganancia ajustable.
3.3.2.1. El problema de las cargas flotantes.
3.4.     El amplificador de instrumentación.
3.4.1.   Funcionamiento del circuito.
3.4.2.   Configuración para salida acoplada en
continua.
3.5.     Medición con el amplificador de
instrumentación.
3.5.1.   Conexión con la terminal sensora.
3.5.2.   Medidas de tensión diferencial.
3.6.     Amplificadores básicos de puente.
3.6.1.   Conexión directa a puente de medida con
transductor.
3.7.     Amplificador de puente práctico con el
AO 741.
3.7.1.   El aumento del margen de linealidad.
3.7.2.   Conexión del transductor a tierra.
3.8.     Detector de deformaciones.
3.8.1.   El sensor de deformaciones.
3.8.2.   Conexión de puente básica.
3.8.3.   Circuito con el amplificador de
instrumentación AD521.
        
CB2 CB3 CB5 CG3 CG4 CT1 CT15 CT4 CT7 EI02 EI06 R2 R3 R1
            d.TEMA 4. FILTROS ACTIVOS

4.1.     Introducción.
4.1.1.   Filtros pasivos, tipos de filtros según
la banda de paso.
4.1.2.   Filtros activos ideales.
4.2.     Filtros de primer orden.
4.2.1.   Funciones de transferencia.
4.2.2.   Realizaciones prácticas y procedimiento
de diseño.
4.3.     Filtros de segundo orden.
4.3.1.   Funciones de transferencia. Filtro de
Butterworth.
4.3.2.   Realizaciones prácticas. Células de
Sallen-Key y Rauch.
4.3.2.1. Circuito con realimentación múltiple.
4.3.2.2. Circuito con fuente de tensión
controlada por tensión.
4.3.3.   Procedimiento de diseño.
4.3.4.   Optimización de la respuesta temporal.
4.4.     Filtros de orden superior.
4.4.1.   Realizaciones prácticas.
4.4.2.   Procedimiento de diseño.
        
CB2 CG3 CG4 CT7 EI02 EI06 R2 R3 R1
            e.TEMA 5. CIRCUITOS CON AMPLIFICADORES
OPERACIONALES Y DIODOS

5.1.     Introducción: Limitadores, recortadores
y rectificadores de precisión.
5.2.     Limitador paralelo básico.
5.3.     Limitador serie básico.
5.4.     Problemas a resolver para obtener
circuitos de precisión.
5.5.     Dos mejoras al recortador básico.
5.5.1.   Limitador paralelo o recortador con
fuentes fijas.
5.5.2.   Mejora de la pendiente en la zona de
recorte.
5.6.     Limitador serie o circuito con \"zona
muerta\" de precisión.
5.6.1.   Bloques con salida positiva y negativa.
5.6.2.   Bloque con salida bipolar.
5.7.     Circuito limitador de precisión base
perfeccionado, de limitación
unilateral.
5.8.     Aplicaciones de los limitadores serie.
5.8.1.   Rectificadores lineales de precisión.
5.8.1.1. Rectificadores de media onda.
5.8.1.2. Generadores de valor absoluto y
generador de valor medio.
5.8.2.   Generadores de función a tramos.
5.8.3.   Detectores de pico.
5.9.     Amplificadores logarítmicos y
antilogarítmicos. Aplicaciones:
divisores y multiplicadores analógicos.
        
CB2 CB3 CB5 CG3 CG4 CT1 CT4 CT7 EI02 EI06 R2 R3 R1
            f.TEMA 6. GENERADORES DE SEÑAL

6.1.     Circuito astable o multivibrador libre.
6.1.1.   Basados en amplificador operacional
6.1.1.1. Funcionamiento del circuito y cálculo
de la frecuencia de oscilación.
6.1.2.   Basados en circuitos integrados
comparadores.
6.1.2.1. Funcionamiento del circuito y cálculo
de la frecuencia de oscilación.
6.2.     Temporizador con disparo único
retardado.
6.2.1.   Estado estable y estado temporizado.
6.2.2.   Ejemplo de alimentación a carga
resistiva.
6.3.     Circuito monoestable basado en
amplificador operacional.
6.4.     El temporizador integrado 555.
6.4.1.   Esquema interno.
6.4.2.   Modos de operación.
6.4.2.1. Astable.
6.4.2.2. Monoestable y circuitos de disparo.
6.5.     Generador de ondas cuadradas y
triangulares.
6.6.     Generador de diente de sierra.
        
CB2 CB4 CB5 CG3 CT1 CT4 CT7 EI02 EI06 R2 R3 R1
            g.TEMA 7. CARACTERÍSTICAS DE LOS AMPLIFICADORES
ELECTRÓNICOS REALIMENTADOS

7.1.     Concepto de realimentación.
7.2.     Clasificación de los amplificadores
realimentados.
7.2.1.   Amplificador de tensión.
7.2.2.   Amplificador de corriente.
7.2.3.   Amplificador de transconductancia.
7.2.4.   Amplificador de transrresistencia.
7.3.     Elementos del circuito. Función de
transferencia en lazo cerrado.
7.4.     Características generales de los
amplificadores con realimentación
negativa.
7.4.1.   Estabilidad de la función de
transferencia.
7.4.2.   Distorsión de frecuencia.
7.4.3.   Reducción del ruido.
7.5.     Resistencias de entrada y de salida.
7.6.     Ejemplos de análisis.
        
CG3 CT7 EI02 R2 R3 R1
            h.TEMA 8. RESPUESTA EN FRECUENCIA Y ESTABILIDAD
DE LOS AMPLIFICADORES REALIMENTADOS

8.1.     Introducción, Características de un
sistema realimentado con
amplificadores operacionales.
8.2.     Ganancia y ancho de banda de un
amplificador realimentado.
8.3.     El Principio de Inversión.
8.4.     Concepto de estabilidad. Técnicas de
estudio de la estabilidad.
8.4.1.   Criterio de Routh.
8.4.2.   El lugar de las raíces.
8.4.3.   Criterio de Bode.
8.5.     Compensación. Técnicas.
8.5.1.   Compensación por avance de fase.
8.5.2.   Compensación por retardo de fase.
        
CG3 CT7 EI02 EI06 R2 R3 R1
            i.TEMA 9. OSCILADORES SINUSOIDALES CON
TRANSISTORES Y AMPLIFICADORES
OPERACIONALES

9.1.     Concepto de oscilación sinusoidal.
9.2.     Criterio de Barkhausen.
9.3.     Osciladores RC.
9.3.1.   Puente de Wien.
9.3.2.   Oscilador de cambio de fase.
9.3.3.   Estabilidad en frecuencia.
9.4.     Osciladores LC.
9.5.     Osciladores a cristal.
        
CB2 CG3 CT1 CT15 EI02 EI06 R2 R3 R1

 

Bibliografía

Bibliografía Básica

·   HAMBLEY, ALLAN R.Electrónica. Prentice Hall, 2003.

·  COUGHLIN, R. F. y DRISCOLL, F.F.. Amplificadores Operacionales y Circuitos Integrados Lineales. 4ª edición. Prentice-Hall hispanoamericana. México, 1993.

· FAULKENBERRY, L.M.. Introducción a los amplificadores operacionales con aplicaciones lineales. Limusa-Noriega, 1990.

·   MALIK, N. R.Electronics Circuit: Analysis, Simulation and Design. Prentice Hall, 2003.

·   MALVINO, A. P.Principios de Electrónica. 5ªedición. McGraw-Hill, 1993.

· MANUEL, A., PRAT, J., RAMOS, R. y SÁNCHEZ, F.Problemas resueltos de Instrumentación y Medidas Electrónicas. Paraninfo, Madrid, 1994.

·    MILLMAN, J.Microelectrónica. Circuitos y Sistemas Analógicos y Digitales. 5ª edición. Editorial Hispano Europea. Barcelona, 1989.

· PINDADO RICO, R.Electrónica Analógica Integrada. Introducción al Diseño mediante Problemas. Marcombo, Boixareu Editores. Barcelona, 1997.

·  SAVANT, C. J., RODEN, M. S. y CARPENTER, G. L.. Diseño electrónico. Circuitos y sistemas. 2ª edición. Addison-Wesley Iberoamericana, 1992.

·   SCHILLING, D. L., BELOVE, C., APELEWITZ, T. y SACCARDI, R. J.Circuitos Electrónicos: Discretos e Integrados. 3ª edición. MacGraw-Hill, 1993.

 

Bibliografía Específica

·   GHAUSI, M. S.. Circuitos electrónicos: discretos e integrados. Nueva editorial interamericana. México, D. F, 1987.

· GRAY, P.R. y MEYER, R.G.. Analysis and Design of Analog Integrated Circuits. Second edition. John Wiley and Sons. New York, 1990.

·  GONZÁLEZ, J.J.Circuitos Electrónicos con Amplificadores Operacionales. Problemas, fundamentos teóricos y técnicas de identificación y análisis. Marcombo, Boixareu Editores. Barcelona, 2001.

 

Bibliografía Ampliación

·  MILLMAN, J. y GRABEL, A.. Microelectrónica. 6ª edición. Editorial Hispano Europea. Barcelona, 1991.

·  MIRA, J. y DELGADO, A. E.. Electrónica Analógica Lineal. Tomos I y II. U.N.E.D. Madrid, 1993.

 

El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.