Fichas de asignaturas 2015-16
![]() |
ASTRONOMÍA Y GEODESIA |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 40209044 | ASTRONOMÍA Y GEODESIA | Créditos Teóricos | 4.5 |
Título | 40209 | GRADO EN MATEMÁTICAS | Créditos Prácticos | 3 |
Curso | 4 | Tipo | Optativa | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
Requisitos previos
Conocimientos básicos adquiridos en las asignaturas de los primeros semestres del grado.
Recomendaciones
Conocimientos básicos de programación (Octave/Matlab, R, etc.)
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
MANUEL | BERROCOSO | DOMINGUEZ | Profesor Titular Universidad | N |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB1 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio | BÁSICA |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vacación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | BÁSICA |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | BÁSICA |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado | BÁSICA |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | BÁSICA |
CE1 | Comprender y utilizar el lenguaje matemático. Adquirir la capacidad para enunciar proposiciones en distintos campos de las matemáticas, para construir demostraciones y para transmitir los conocimientos matemáticos adquiridos. | ESPECÍFICA |
CE3 | Asimilar la definición de un nuevo objeto matemático, en términos de otros ya conocidos y ser capaz de utilizar este objeto en diferentes contextos. | ESPECÍFICA |
CE4 | Saber abstraer las propiedades estructurales (de objetos matemáticos, de la realidad observada y de otros ámbitos) distinguiéndolas de aquellas puramente ocasionales y poder comprobarlas con demostraciones o refutarlas con contraejemplos, así como identificar errores en razonamientos incorrectos. | ESPECÍFICA |
CE5 | Resolver problemas matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos. | ESPECÍFICA |
CE6 | Proponer, analizar, validar e interpretar modelos de situaciones reales sencillas, utilizando las herramientas matemáticas más adecuadas a los fines que se persigan. | ESPECÍFICA |
CE7 | Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, visualización gráfica, optimización u otras para experimentar en matemáticas y resolver problemas. | ESPECÍFICA |
CE8 | Desarrollar programas que resuelvan problemas matemáticos utilizando para cada caso el entorno computacional adecuado. | ESPECÍFICA |
CG1 | Utilizar herramientas de búsqueda de recursos bibliográficos. | GENERAL |
CG2 | Poder comunicarse en otra lengua de relevancia en el ámbito científico. | GENERAL |
CG3 | Comprobar o refutar razonadamente los argumentos de otras personas. | GENERAL |
CG5 | Utilizar con fluidez la informática a nivel de usuario. | GENERAL |
CT1 | Saber gestionar el tiempo de trabajo. | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
02 | Adquirir los conocimientos básicos de la Astronomía de Posición. |
08 | Adquirir los conocimientos encaminados al proceso de modelización de la superficie terrestre y conocer los Modelos de Representación Terrestre. |
10 | Capacitación para modelizar la realidad física de la Tierra en el contexto de los sistemas de referencia. |
01 | Conocer los fundamentos de la Trigonometría Esférica |
09 | Conocer los métodos y las técnicas de Geodesia Clásica |
03 | Conocer los sistemas espacio-temporales astronómicos. |
06 | Conocer los sistemas y marcos de referencia celestes |
07 | Conocer los sistemas y marcos de referencias terrestres. |
14 | Manejar con soltura instrumentación geodésica y plantear y resolver problemas geodésicos aplicados y realizar proyectos geodésicos y tratar y analizar datos geodésicos. |
13 | Manejar y desarrollar aplicaciones informáticas relacionadas con las diferentes transformaciones entre sistemas y marcos de referencia astronómicos y geodésicos. |
12 | Manejo de software libre para visualización de sistemas astronómicos y resolución de problemas astronómicos. |
05 | Modelizar y resolver problemas relacionados con el movimiento diurno de los astros. |
11 | Profundización en la visión espacial del alumno y en la resolución de problemas astronómicos y geodésicos. |
04 | Resolver problemas de transformación de coordenadas espaciales y temporales. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
03. Prácticas de informática | 12 | |||
06. Prácticas de salida de campo | 12 | |||
08. Teórico-Práctica | 36 | |||
10. Actividades formativas no presenciales | 30 | |||
11. Actividades formativas de tutorías | 30 | |||
12. Actividades de evaluación | 30 |
Evaluación
Criterios Generales de Evaluación
Evaluación continua con examen final. La evaluación continua se hará por medio de exámenes a lo largo de la asignatura, actividades propuestas y prácticas de laboratorio y ordenador con carácter obligatorio y actividades voluntarias.
Procedimiento de calificación
El exámen final constituirá el 40% de la calificación de la asignatura. El 60% restante de la calificación total de la asignatura se ponderará de acuerdo a al siguiente criterio: - Exámenes a lo largo de la asignatura: entre el 70% y 80%. - Actividades obligatorias: entre 30% y 20%.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
1. Sistemas espaciotemporales en Astronomía: La Trigonometría Esférica y el modelo esférico del Universo. Sistemas de coordenadas astronómicos. Correcciones físicas y geométricas. El problema de la medida del tiempo. |
CE1 CE3 CE4 CE5 CE6 CE7 CE8 | 02 01 03 12 05 11 04 |
2. Sistemas geodésicos y modelos de representación terrestre: La Teoría del Potencial. El geoide y los sistemas dinámicos de altitudes. Modelos geométricos de representación terrestre. Redes geodésicas. Cálculo, ajuste y compensación de redes. Técnicas y métodos geodésicos clásicos. |
CE1 CE3 CE4 CE5 CE6 CE7 CE8 | 08 10 09 14 13 11 |
3. Sistemas celestes y terrestres: Sistemas y marcos celestes (CRS). Sistemas y marcos de referencia terrestre (CTR, ITRF). |
CE1 CE3 CE4 CE5 CE6 CE7 CE8 | 06 07 |
Bibliografía
Bibliografía Básica
- M. Berrocoso, M. E. Ramírez, J. M. Enríquez-Salamanca, A. Pérez-Peña. Notas y apuntes de Trigonometría Esférica y Astronomía de Posición. Servicio de Publicaciones de la Universidad de Cádiz. Cádiz. 2004.
- P. Vanicek y E. Krakiwski. Geodesy. The concepts. 2ª Edición, Elsevier, 1992.
- J. R. Smith. Introduction to Geodesy. John Wiley & Sons, 1997.
Bibliografía Específica
- A. E. Roy y D. Clarke. Astronomy. Principles and practice. Ed. Adam Hilger. Filadelfia. 1994.
- W. A. Heiskannen y H. Moritz. Geodesia Física. IGN, Madrid, 1985.
- G. Bomford. Geodesy. Oxford University Press, Oxford, 1980.
- J. M. Nieto. Curso de Trigonometría Esférica. Servicio de Publicaciones de la Universidad de Cádiz. Cádiz. 1996.
- M. G. Rodríguez, A. Gil. Problemas de Astronomía. Servicio de Publicaciones de la Universidad Complutense. Madrid. 1993.
Bibliografía Ampliación
- R. M. Green. Spherical Astronomy. Cambridge University Press. Londres. 1985.
- W. M. Smart. Text-Book on Spherical Astronomy. Cambridge University Press. 7ª edición. Londres. 1987.
- R. Cid. Curso de Geodesia. Servicio de Publicaciones de la Universidad de Zaragoza, Zaragoza, 1985.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.