Fichas de asignaturas 2015-16
![]() |
CÁLCULO |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 10617002 | CÁLCULO | Créditos Teóricos | 3.75 |
Título | 10617 | GRADO EN INGENIERÍA CIVIL | Créditos Prácticos | 3.75 |
Curso | 1 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
- 2572-10617002-DISTRIBUCION-DE-LOS-CONTENIDOS-DE-CALCULO-G-CIVIL.pdf
- 3469-10617002-3368-10617002-2526-10617002-Cronograma_Ficha_1B_2015_16.pdf
Requisitos previos
Ninguno
Recomendaciones
Tener los conocimientos impartidos en la asignatura MATEMÁTICAS II de bachillerato. También se recomienda tener un hábito de estudio continuado sobre la asignatura.
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
ANTONIO LUIS | CASTO | TORRES | Profesor Titular Escuela Univ. | S |
![]() |
ISMAEL | GONZÁLEZ | YERO | CONTRATADO DOCTOR | N | |
Mª JOSE | MARIN | PECCI | PROFESOR ASOCIADO | N |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización | ESPECÍFICA |
T01 | Capacidad para la resolución de problemas | GENERAL |
T05 | Capacidad para trabajar en equipo | GENERAL |
T07 | Capacidad de análisis y síntesis | GENERAL |
T09 | Creatividad y espíritu inventivo en la resolución de problemas científico-técnicos | GENERAL |
T12 | Capacidad para el aprendizaje autónomo | GENERAL |
T17 | Capacidad para el razonamiento crítico | GENERAL |
Resultados Aprendizaje
Identificador | Resultado |
RA | Aptitud para aplicar los conocimientos sobre: cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos y algorítmica numérica. |
RR | Ser capaz de resolver los problemas matemáticos que puedan plantearse en la ingeniería. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: Clases teóricas MÉTODO DE ENSEÑANZA APRENDIZAJE: Método expositivo. Lección magistral En estas clases el profesor presenta los contenidos básicos correspondientes a las unidades temáticas seleccionadas. Asimismo, se resuelven ejercicios que ayuden a afianzar los conocimientos teóricos y se proponen ejercicios y problemas para ser resueltos por los alumnos. |
30 | Grande | B01 T01 T07 T09 T12 T17 |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases prácticas MÉTODOS DE ENSEÑANZA- APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. En estas clases se desarrollan actividades de aplicación de los conocimientos adquiridos a problemas concretos que permitan ampliar y profundizar en dichos conocimientos. Los alumnos podrán trabajar individualmente o en grupos pequeños |
15 | Mediano | B01 T01 T05 T07 T09 T12 T17 |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de Informática MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas En estas clases los estudiantes resolverán un conjunto de problemas utilizando las aplicaciones informáticas de un programa de cálculo simbólico y analizarán los resultados obtenidos. |
15 | Reducido | B01 T01 T05 T07 T09 T12 T17 |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual/autónomo MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Contrato de aprendizaje Estas sesiones contemplan el trabajo realizado por el alumno para comprender los contenidos impartidos en clases teóricas, en clases de problemas y en prácticas con ordenador. Asimismo, se contempla la búsqueda bibliográfica necesaria para el mejor estudio. |
79 | B01 T01 T07 T09 T12 T17 | |
11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y seminarios Sesiones dedicadas a orientar al alumno sobre cómo abordar la resolución de ejercicios y problemas relativos al desarrollo de la asignatura |
5 | B01 T01 T07 T09 T12 T17 | |
12. Actividades de evaluación | ACTIVIDADES DE EVALUACIÓN Sesiones donde se realizan las diferentes pruebas de progreso periódico. |
6 | B01 T01 T07 T09 T12 T17 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Pruebas de conocimientos básicos | Prueba objetiva de elección múltiple/Análisis documental |
|
|
Realización de pruebas de progreso | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura |
|
B01 T01 T07 T09 T12 T17 |
Realización de una prueba final | Prueba escrita compuesta por ejercicios teórico-prácticos y problemas sobre los contenidos de la asignatura. |
|
B01 T01 T07 T09 T12 T17 |
Trabajo de realización de las pruebas de informática | Análisis documental/Rúbrica de valoración de documentos |
|
B01 T01 T05 T07 T09 T12 T17 |
Procedimiento de calificación
Se evaluará tanto la realización de diversas actividades que se propondrán en el aula, las PRUEBAS DE PROGRESO (PPGR) que se realizarán a lo largo del curso, y la participación activa del alumno mediante la entrega de tareas. En las PPGR se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. Estas pruebas PPGR serán usualmente escritas. Supondrán un 80% de la calificación global de la asignatura. Los TEST o PRUEBAS DE CONOCIMIENTO BÁSICO (TEST) supondrán un 10% de la calificación global de la asignatura, y podrán ser propuestos y a realizar en el Aula o través del Campus Virtual. El TRABAJO DE REALIZACIÓN DE LAS PRÁCTICAS DE INFORMÁTICA (INFORM) tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado, y supondrá un 10% de la calificación global de la asignatura. El alumno que no supere una, o más de una, de las pruebas PPGR, deberá realizar un EXAMEN FINAL que se valorará de la misma forma que las PPGR (un 80% de la calificación final), siendo la Junta de Escuela quien establezca la fecha y el lugar de realización. Se considerará que ha adquirido las competencias de la asignatura aquel alumno que obtenga 5 o más puntos en la NOTA FINAL de la asignatura, según la siguiente fórmula: NOTA FINAL = TEST (10%) + INFORM (10%) + PPGR ó EXAMEN FINAL (80%) OBSERVACIÓN: Sólo se computará la nota media de las PPGR en caso de que el alumnno las aprueba TODAS. En cualquier otro caso, deberá realizar el EXAMEN FINAL. Se podrá solicitar la defensa de algún examen por parte del alumno en la Sección departamental ante profesores del Departamento
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
TEMA 0.- FUNCIONES DE UNA VARIABLE Lección 1.- Cálculo diferencial de funciones de una variable Números reales y complejos.- Definición de función.- Concepto de continuidad y límite.- Cálculo de límites.- Concepto de derivada.- Interpretación de la derivada.- Cálculo de derivadas.- Teoremas del valor medio.- Regla de LHôpital.- Derivación implícita. Lección 2.- Cálculo integral de funciones de una variable Función primitiva.- Cálculo de primitivas.- Problema del área de una región plana.- Integral de Riemann.- Propiedades de la integral de Riemann.- Teorema del valor medio.- Teorema fundamental del Cálculo y regla de Barrow.- Aplicaciones de la integral.- Integrales impropias. |
B01 T01 T05 T07 T09 T12 T17 | RA RR |
TEMA 1.- SUCESIONES Y SERIES Sucesiones reales.- Límite de una sucesión.- Conceptos de convergencia y divergencia.- Series reales: de términos positivos, alternadas y de términos cualesquiera .- Conceptos de convergencia y divergencia.- Series geométricas y armónica simple.- Criterios de convergencia.- Series de potencias.- Teorema de Taylor.- Series de McLaurin y Taylor. |
B01 T01 T05 T07 T09 T12 T17 | RA RR |
TEMA 2.- MÉTODOS NUMÉRICOS Resolución numérica de ecuaciones.- Interpolación polinómica.- Aproximación de funciones.- Diferenciación e integración numérica. |
B01 T01 T05 T07 T09 T12 T17 | RA RR |
TEMA 3.- CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES Introducción a funciones de varias variables.- Superficies en el espacio.- Continuidad y límites.- Derivadas parciales.- Diferenciabilidad.- Regla de la cadena.- Derivadas direccionales.- Derivación implícita.- Optimización de funciones de varias variables.- Multiplicadores de Lagrange. |
B01 T01 T05 T07 T09 T12 T17 | RA RR |
TEMA 4.- CÁLCULO INTEGRAL DE FUNCIONES DE VARIAS VARIABLES Integrales iteradas.- Integrales dobles y triples.- Aplicaciones.- Cambio de variables: coordenadas polares, cilíndricas y esféricas |
B01 T01 T05 T07 T09 T12 T17 | RA RR |
Bibliografía
Bibliografía Básica
A. García, F. García, A. Gutiérrez, A. López, G. Rodríguez, A. de la Villa.
Cálculo I. Ed. Clagsa, 1998.
F. Martínez de la Rosa, C. Vinuesa Sánchez.
Matemáticas. Servicio de Publicaciones de la Universidad de Cádiz, 2003.
R.L. Burden, J. D. Faires. Análisis Numérico. International Thomson Editores, S.A., 2002.
Martínez, F. y Garrido, M.J. ``Matemáticas II". Servicio de Publicaciones. U.C.A. 1998.
A. García, A. López, G. Rodríguez, S. Romero, A. de la Villa.
Cálculo II. Teoría y problemas de funciones de varias variables", Clagsa, 1996.
R. Larson, R. Hostetler, B. Edwards.
Cálculo. Volúmenes I y II. Ed. McGraw-Hill.
V. Tomeo, I. Uña, J. San Martín.
Problemas resueltos de Cálculo en una variable. Ed. Thomson Paraninfo, 2005.
Braulio de Diego. Ejercicios de Análisis. Cálculo Diferencial e Integral. Ed. Deimos.
Ayres-Mendelson. Cálculo diferencial e integral. Ed. McGraw-Hill.
F. Granero. Ejercicios y problemas de Cálculo, Tomos I y II. Ed. Tebar Flores.
A. J. Arriaza Gómez, J. M. Calero Posada, L. Del Águila Garrido, A. Fernández Valles, F. Rambla Barreno,
M. V. Redondo Neble, J. R. Rodríguez Galván. Prácticas de Matemáticas con Maxima. Matemáticas usando Software Libre.
Bibliografía Ampliación
B. Demidovich. Problemas y ejercicios de análisis matemático. Ed. Mir o Ed. Paraninfo.
Anti-Demidovich (1, 2, 3 y 4). Matematnka.
D. Kincaid, W. Cheney. Análisis Numérico. Addison-Wesley Iberoamericana, Wilmington 1994.
F. Guillén González, A. Doubova Krasotchenko. Un Curso de Cálculo Numérico: Interpolación, Aproximación, Integración y Resolución de Problemas
Diferenciales. Sevilla, España. Servicio de Publicaciones Universidad de Sevilla. 2007.
J. A. Sánchez Viña. E. Sánchez Mañes. Ejercicios y complementos de Análisis Matemático I. Tecnos
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.