Fichas de asignaturas 2015-16
![]() |
AUTOMATIZACIÓN INDUSTRIAL |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 21715038 | AUTOMATIZACIÓN INDUSTRIAL | Créditos Teóricos | 3.75 |
Título | 21721 | GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES - CÁDIZ | Créditos Prácticos | 3.75 |
Curso | 3 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C140 | INGENIERIA EN AUTOMÁTICA, ELECTRÓNICA, ARQUITECTURA Y REDES DE COMPUTADORES |
Requisitos previos
El alumnado debe haber adquirido las competencias correspondientes a materias de primer y segundo curso como Física, Matemáticas, Electrónica, Electrotecnia y Automática.
Recomendaciones
Los alumnos deberán: 1. Tener conocimientos sobre electricidad, electrónica, matemáticas y física. 2. Deberán tener interés por las nuevas tecnologías y el diseño de equipos. 3. Deberán tener motivación por introducirse en conocer, comprender y diseñar los sistemas implicados en la automatización de procesos industriales.
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
AGUSTIN | CONSEGLIERE | CASTILLA | Profesor Titular Escuela Univ. | N |
![]() |
DANIEL | SANCHEZ | MORILLO | Profesor Contratado Doctor | S |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | GENERAL |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | GENERAL |
CT1 | Capacidad para la resolución de problemas. | TRANSVERSAL |
CT15 | Capacidad para interpretar documentación técnica. | TRANSVERSAL |
CT17 | Capacidad para el razonamiento crítico. | TRANSVERSAL |
CT2 | Capacidad para tomar decisiones. | TRANSVERSAL |
CT4 | Capacidad de aplicar los conocimientos en la práctica. | TRANSVERSAL |
CT5 | Capacidad para trabajar en equipo. | TRANSVERSAL |
CT6 | Actitud de motivación por la calidad y la mejora continua. | TRANSVERSAL |
CT7 | Capacidad de análisis y síntesis. | TRANSVERSAL |
CT9 | Creatividad y espíritu inventivo en la resolución de problemas científico-técnicos. | TRANSVERSAL |
EI09 | Conocimientos de principios y aplicaciones de los sistemas robotizados | ESPECÍFICA OPTATIVA |
EI11 | Capacidad para diseñar sistemas de control y automatización industrial. | ESPECÍFICA OPTATIVA |
Resultados Aprendizaje
Identificador | Resultado |
R02 | Conocer los principios y aplicaciones de los sistemas robotizados. |
R01 | Conocer y aplicar tecnologías para el diseño de sistemas de control y automatización de procesos industriales. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | Clases de teoría. Método de enseñanza aprendizaje. Estas clases, impartidas en un aula a la que asisten todos los alumnos, se dedican a la exposición de la teoría necesaria para la comprensión de la materia. En estas clases se hará uso de la pizarra y de medios de presentación electrónicos. |
30 | ||
04. Prácticas de laboratorio | Determinados conceptos y capacidades serán mostrados en el laboratori. El alumno, en grupos reducidos, podrá experimentar los temas tratados en las sesiones teóricas o en las propias sesiones de laboratorio. |
30 | ||
10. Actividades formativas no presenciales | Se asignaran tareas para su realización en equipos de trabajo reducidos. Éstas tareas incorporarán actividades propuestas por el profesorado, y cuyo resultado se plasmará en el trabajo final del curso. Se realizarán, cuando se soliciten, memorias que trabajo que documenten la consecución de los objetivos marcados en las sesiones prácticas. |
76 | Reducido | |
11. Actividades formativas de tutorías | Atención personal (sin exclusión de la posibilidad de atención a grupos en situaciones puntuales) al alumno con el fin de asesorarlo sobre los distintos aspectos relativos al desarrollo de la asignatura. |
10 | Reducido | |
12. Actividades de evaluación | Examen final (ver Procedimiento de Evaluación). |
4 | Grande |
Evaluación
Criterios Generales de Evaluación
La evaluación de las clases de laboratorio se realizará a partir de los resultados aportados (documentación, informes, memorias, diseños, etc.). Tras las sesiones prácticas, podrá realizarse un examen final en la última sesión. Se valorará no sólo la corrección de los resultados, sino también otros detalles que permitan la evaluación de competencias transversales y/o de actitud hacia la asignatura. La asistencia a las sesiones de laboratorio es obligatoria y se controlará mediante las correspondientes listas. En el examen final se valorará, además del acierto esperado, la exposición, expresión y capacidad de síntesis de los conceptos. Igualmente se consideraran positivamente las soluciones novedosas y originales que en ese momento aporte el alumno a la resolución, siempre y cuando dichos métodos sean coherentes desde el punto de vista científico-técnico y conlleven a soluciones acertadas o similares respecto a los métodos expuestos en las clases. En el trabajo en grupo se valorarán, además de aspectos técnicos, la claridad y precisión en cuanto a presentación y expresión, así como la adecuada organización de los contenidos expuestos. La asistencia a las clases de teoría es obligatoria y se controlará mediante las correspondientes listas de firmas que se pasarán de forma aleatoria.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Examen final | Prueba escrita que puede contemplar, según cada caso, la exposición de conceptos teóricos o explicaciones desarrolladas acerca de los contenidos impartidos por esta asignatura. Cuando se incluya un apartado de problemas, se solicitará la resolución numérica de ejercicios, situaciones concretas acerca de automatismos industriales, casos prácticos o diseños específicos, que en cualquier caso se adecuarán a las competencias adquiridas hasta este momento. |
|
|
Prácticas de Laboratorio | Durante las sesiones prácticas, el profesor tomará nota de los puntos resueltos satisfactoriamente por el alumno, o bien pedirá una memoria con los contenidos vistos en cada sesión y los resultados de la experimentación. Se valorará la adecuación de las respuestas y el grado de comprensión del problema. En la última práctica se podrá programar un examen final individual en el laboratorio. La asistencia a las sesiones de laboratorio es obligatoria y se controlará mediante las correspondientes listas. |
|
|
Trabajo en Grupo | Se realizará un trabajo en grupo sobre un tema propuesto por el profesorado. Se redactará una memoria y se preparará una presentación final multimedia para la que podrá solicitarse una defensa oral. |
|
Procedimiento de calificación
La evaluación se realizará de manera continua, evaluando teoría, prácticas y sesiones de laboratorio y trabajo grupal con el fin de disponer de una visión integral de los conocimientos y habilidades adquiridas. La nota de teoría se establecerá a través de un examen escrito. La nota final de teoría será un 80% de la nota final de la asignatura. El trabajo en grupo supondrá el 10% de la calificación final. La nota de laboratorio se obtendrá mediante la evaluación continua a lo largo de las prácticas. El profesor tomará nota en cada práctica de los puntos resueltos satisfactoriamente por el alumno, o bien pedirá una memoria con los contenidos vistos en cada sesión. En la última práctica se podrá realizarse un examen final individual en el laboratorio, con un peso del 50% en la nota total del laboratorio. La nota de laboratorio será el 10% de la nota final de la asignatura. Será requisito imprescindible obtener una nota mínima de 5 en cada una de las partes (teoría, trabajo y laboratorio) para aprobar la asignatura. Si la calificación del examen final es inferior a 5 sobre 10, la nota final será la de dicho examen final. Aquellos alumnos que no puedan acudir regularmente (al menos a un 80%) a las clases de teoría y laboratorio, deberán superar en las convocatorias oficiales un examen que constará de dos partes: a) Un examen escrito a realizar en el aula que constará de preguntas que cubran el temario completo del curso. Dicho examen escrito supondrá un 80% de la nota final de la asignatura. b) Una prueba a realizar en el laboratorio que constará de varios apartados similares a los vistos en las prácticas realizadas durante el curso. Esta prueba se hará en el laboratorio de uso habitual en la asignatura, a continuación del examen escrito. Esta prueba supondrá el 20% de la nota final de la asignatura. Como ocurre con la evaluación continua, será requisito imprescindible obtener una nota mínima de 5 en cada una de las partes (examen escrito y laboratorio), para aprobar la asignatura. Las prácticas de laboratorio realizadas durante un curso académico no tienen validez en el siguiente. En el caso de que un alumno no consiga superar la asignatura, deberá completarlas de nuevo.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
TEMA 1. Introducción al control industrial 1.1. Introducción 1.2. Sistemas de control 1.3. Automatismos 1.4. Autómatas programables y ordenadores industriales |
CB2 EI11 | R01 |
TEMA 2. Sensores y actuadores industriales 2.1. Actuadores industriales eléctricos, hidráulicos y neumáticos 2.2. Sensores industriales |
CT1 CT15 CT4 EI11 | R01 |
TEMA 3. Métodos de diseño 3.1. Automatismos combinacionales y secuenciales 3.2. Métodos de diseño clásicos 3.3. Métodos mediante ecuaciones lógicas 3.4. GRAFCET |
CB2 CT1 CT17 CT2 CT4 CT7 EI11 | R01 |
TEMA 4. Autómatas programables 4.1. Introducción, clasificación y estructura de los autómatas programables 4.2. Unidad central de proceso y memoria 4.3. Comunicaciones 4.4. Modos de funcionamiento 4.5. Elección del autómata programable 4.6. Programación del autómatas programables: estándar 61131 |
CB5 CT15 CT17 CT2 CT4 CT7 CT9 EI11 | R01 |
TEMA 5. Supervisión de procesos industriales y sistemas SCADA |
CB5 CT15 CT4 EI11 | R02 R01 |
TEMA 6. Comunicaciones Industriales. |
CT15 CT2 CT5 EI09 EI11 | R02 R01 |
TEMA 7. Tecnologías de automatización. Conceptos y bases para el diseño de manipuladores. Introducción a la robótica industrial. |
CB2 CB5 CT17 CT2 CT6 CT7 CT9 EI09 EI11 | R02 |
UNIDADES PRÁCTICAS: SESIONES DE LABORATORIO |
CB2 CB5 CT1 CT15 CT2 CT4 CT5 CT6 CT7 CT9 EI09 | R02 R01 |
Bibliografía
Bibliografía Básica
-
Sánchez Morillo, Daniel. Introducción a la síntesis y programación de automatismos secuenciales. Universidad de Cádiz, 2013. ISBN: 9788498284034
-
A.K. Gupta and S.K. Arora. Industrial Automation and Robotics: An Introduction. Mercury Learning & Information, 2015. ISBN: 978-1938549304
- Piedrafita Moreno, Ramón. Ingeniería de la Automatización Industrial. Ra-Ma, 2004. ISBN: 84-7897-604-3.
-
Domingo Peña,Joan et al. Diseño y aplicaciones con autómatas programables. Uoc, 2003. ISBN: 978-84-8429-029-2.
-
Mandado Pérez, Enrique et al. Automatas programables y sistemas de automatización. Marcombo, 2009. ISBN: 978-84-267-1575-3.
-
J. Balcells, J. L. Romeral. Autómatas Programables. Marcombo, 1997. ISBN: 84-267-1089-1.
-
Mandado, E. et al. Autómatas Programables. Entorno y Aplicaciones. Thomson, 2006. ISBN: 978-84-9732-328-9.
-
Rodríguez Penin, Aquilino. Sistemas SCADA. Marcombo, 2007. ISBN: 978-84-267-1450-3.
-
Control distribuido: bases de campo. Universidad de Alcalá de Henares, 2002. ISBN: 978-84-8138-520-5.
-
Kumar Saha,Subir. Introducción a la robótica. McGraw-Hill, 2010. ISBN: 078-607-15-0313-9.
Bibliografía Específica
-
Guerrero Jiménez, Vicente et al. Comunicaciones industriales. Marcombo, 2009. ISBN: 978-84-267-1574-6
-
Lladonosa Giró, Vicente, Ibáñez, Ferran. Programación de automatas programables Omron. Marcombo, 1995. ISBN: 842671014X
-
Lewis R.W. Programming Industrial Control Systems usig IEC 1131-1. IEEE, 1998. ISBN: 978-08-529-6950-2
-
Pedro Romera, J. et al. Automatización. Problemas resueltos con automatas programables. Thomson, 2007. ISBN: 978-84-283-2077-2.
-
ldán Viloria, José. Automatismos y cuadros eléctricos. Paraninfo, 2001. ISBN: 84-283-2492-1.
-
Barrientos, Antonio et al. Fundamentos de Robótica. Mc Graw Hill, 2007.ISBN: 8448156366.
Bibliografía Ampliación
En el campus virtual estarán disponibles manuales relacionados con el hardware y software utilizados en la asignatura. Se dispondrán igualmente enlaces a recursos multimedia online de interés.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.