Fichas de asignaturas 2016-17
![]() |
TEORIA DE LA PROBABILIDAD |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 40209023 | TEORIA DE LA PROBABILIDAD | Créditos Teóricos | 4.5 |
Título | 40209 | GRADO EN MATEMÁTICAS | Créditos Prácticos | 3 |
Curso | 2 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C146 | ESTADISTICA E INVESTIGACION OPERATIVA |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
Recomendaciones
Se recomienda haber cursado Análisis de funciones de varias variables, Introducción a la Probabilidad y a la Estadística y cursar simultáneamente Integración.
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
ANTONIA | CASTAÑO | MARTINEZ | TITULAR DE UNIVERSIDAD | S |
![]() |
FERNANDO | FERNANDEZ | PALACIN | Profesor Titular Universidad | N |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB1 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio | BÁSICA |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vacación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | BÁSICA |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | BÁSICA |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado | BÁSICA |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | BÁSICA |
CE1 | Comprender y utilizar el lenguaje matemático. Adquirir la capacidad para enunciar proposiciones en distintos campos de las matemáticas, para construir demostraciones y para transmitir los conocimientos matemáticos adquiridos. | ESPECÍFICA |
CE2 | Conocer demostraciones rigurosas de algunos teoremas clásicos en distintas áreas de las matemáticas. | ESPECÍFICA |
CE3 | Asimilar la definición de un nuevo objeto matemático, en términos de otros ya conocidos y ser capaz de utilizar este objeto en diferentes contextos. | ESPECÍFICA |
CE5 | Resolver problemas matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos. | ESPECÍFICA |
CE6 | Proponer, analizar, validar e interpretar modelos de situaciones reales sencillas, utilizando las herramientas matemáticas más adecuadas a los fines que se persigan. | ESPECÍFICA |
CE7 | Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, visualización gráfica, optimización u otras para experimentar en matemáticas y resolver problemas. | ESPECÍFICA |
CG1 | Utilizar herramientas de búsqueda de recursos bibliográficos. | GENERAL |
CG3 | Comprobar o refutar razonadamente los argumentos de otras personas | GENERAL |
CT1 | Saber gestionar el tiempo de trabajo. | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
01 | Manejar vectores aleatorios y conocer su utilidad para la modelización de fenómenos reales |
02 | Utilizar el concepto de independencia y aplicar en casos sencillos el teorema central del límite |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | Clase teórica impartida por el profesor, asistido con medios audiovisuales, en la que se enseñan los contenidos básicos de un tema y se resuelven problemas que ayuden a comprender las nociones introducidas. |
36 | Grande | CB1 CB2 CB3 CE1 CE2 CE3 CG1 |
02. Prácticas, seminarios y problemas | Clase de problemas impartida por el profesor mediante la resolución de ejercicios con participación activa del alumno. Aprendizaje basado en problemas a desarrollar en los seminarios. |
12 | ||
03. Prácticas de informática | Sesiones en las que los alumnos aplicarán los conocimientos adquiridos en las clases teóricas al manejo de datos mediante un software estadístico de referencia, a ser posible de licencia libre, y que utilizarán para la resolución de problemas propuestos en dichas sesiones. |
12 | Reducido | CB2 CB3 CB4 CE5 CE6 CE7 CG3 CT1 |
10. Actividades formativas no presenciales | Estudio y trabajo individual y autónomo |
71 | Reducido | CB1 CB2 CB3 CB4 CE1 CE2 CE3 CE5 CE6 CE7 CG1 CG3 CT1 |
11. Actividades formativas de tutorías | Tutorías individuales y/o colectivas, pudiendo ser presenciales y/o virtuales. |
9 | Reducido | CB1 CB2 CB3 CB4 CB5 CE1 CE2 CE3 CE5 CE6 CE7 CG1 CG3 |
12. Actividades de evaluación | Sesiones donde se realizarán las diferentes pruebas de progreso periódico. |
10 | Grande | CB1 CB2 CB3 CB4 CE1 CE2 CE3 CE5 CE6 CE7 CG3 CT1 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura tendrá en cuenta las puntuaciones obtenidas en cada una de las actividades, de la forma que se especifica en el procedimiento de calificación. Para superar la asignatura, el alumno debe alcanzar o superar la calificación final de 5 puntos sobre 10.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Controles periódicos de adquisición de conocimientos | Cuestiones teóricas y ejercicios prácticos que podrán ser de tipo test y desarrollarse en el aula de informática. |
|
CB1 CB2 CB3 CB4 CB5 CE1 CE2 CE3 CE5 CE6 CE7 |
Realización de prácticas informáticas | En las sesiones prácticas de informática se podrá proponer la resolución de ejercicios mediante software estadístico |
|
CB1 CB2 CB3 CB4 CE1 CE5 CE6 CE7 CT1 |
Realización de una prueba final sobre la asignatura completa | Prueba escrita compuesta por cuestiones teóricas y ejercicios prácticos |
|
CB1 CB2 CB3 CB4 CB5 CE1 CE2 CE3 CE5 CE6 CG1 CG3 CT1 |
Procedimiento de calificación
El alumno obtendrá un 30% de la nota final a través de las actividades realizadas (controles periódicos y prácticas de informática) durante el curso y el resto corresponderá al examen final.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
Tema 1: VARIABLES ALEATORIAS CONTINUAS. Función de distribución. Función de densidad. Funciones de una variable aleatoria. Momentos. Función generatriz. Función característica. Desigualdades: Markov, Chebychev. |
CB1 CB2 CB3 CB4 CB5 CE1 CE2 CE3 CE5 CE6 CE7 CG1 CG3 CT1 | 01 |
Tema 2: VARIABLES ALEATORIAS MULTIDIMENSIONALES. Distribuciones marginales y condicionadas. Cópulas. Variables aleatorias independientes. Funciones de varias variables aleatorias. Correlación, covarianzas y momentos. Esperanza y varianza condicionada. |
CB1 CB2 CB3 CB4 CB5 CE1 CE2 CE3 CE5 CE6 CE7 CG1 CG3 CT1 | 01 |
Tema 3: MODELOS DE DISTRIBUCIONES. Modelos de distribuciones continuas univariantes: Uniforme, Gamma, Exponencial, Chi-cuadrado, Beta, Cauchy, Normal. Distribución normal bivariante. Distribución Multinomial. |
CB1 CB2 CB3 CB4 CB5 CE1 CE2 CE3 CE5 CE6 CE7 CG1 CG3 CT1 | 01 02 |
Tema 4: TEOREMAS LÍMITE. Tipos de convergencia: convergencia en ley, en probabilidad, en media de orden r y casi segura. Leyes de los grandes números. Teorema Central del límite. |
CB1 CB2 CB3 CB4 CB5 CE1 CE2 CE3 CE5 CE6 CE7 CG1 CG3 CT1 | 02 |
Bibliografía
Bibliografía Básica
- García García, V., Ramos Romero, H., Sordo Díaz, M.A. (2008). "193 problemas resueltos de cálculo de probabilidades". Sevicio de Publicaciones de la UCA.
- Quesada Paloma, V.; Pardo Llorente, L.; Ibarrola, P. (2010). Teoría de la Probabilidad. Ed. Síntesis.
- Rohatgi, V.K. (1976). An Introducction to Probability Theory and Mathematical Statistics. John Wiley and sons. New York.
- Rohatgi, V.K., Ehsanes Saleh, A.K (2001) An introduction to Probability and Statistics, Wiley & Sons, Incorporated, John.
- Vélez Ibarrola, R. (2004). Cálculo de Probabilidades 2. Ediciones Académicas.
Bibliografía Específica
- Martín-Pliego López, F. J., Ruiz-Maya Pérez, L. (2007). Fundamentos de Probabilidad. Paraninfo.
- Ross, S. M. (1989). Introduction to Probability Models. Academic Press.
Bibliografía Ampliación
- Ash, Robert (1970). Basic Probability Theory. Wiley&Sons.
- Ash, R.B., Doleans-Dade, C.A. (1999). Probability and Measure Theory, 2nd. Ed., Academic Pres.
- Feller, W. (1984). An Introduction to Probability Theory and Its Applications, Vol 1y 2, Ed. Mir.
- Hernández Morales, V., Vélez Ibarrola R. (1995). Dados, modelos y urnas. UNED.
- Kallenberg, O.(2002): Foundations of Modern Probability 2nd ed. Springer.
- Loéve, M. (1978) Probability Theory 3rd ed., Springer.
- Mood, A.F. Graybill, F., Boes, D. (1974): "Introduction to the theory of statistics". Ed.McGraw-Hill.
- Ross, S.M. (2007): "Introducción a la Estadística". Ed. Reverté.
- Quesada, V., Pardo, L. (1987). Curso Superior de Probabilidades. PPU, Barcelona.
- Shiryaev (1996). Probability. Springer, New York.
- Spiegel, Murray (1998) Probabilidad y Estadística; Mc Graw-Hill.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.