Usted está aquí: Inicio web asignaturas

 

Fichas de asignaturas 2016-17


AMPLIACIÓN DE MATEMÁTICAS

Asignaturas
 

  Código Nombre    
Asignatura 40906003 AMPLIACIÓN DE MATEMÁTICAS Créditos Teóricos 3.75
Título 40906 GRADO EN ARQUITECTURA NAVAL E INGENIERÍA MARÍTIMA Créditos Prácticos 3.75
Curso   2 Tipo Troncal
Créd. ECTS   6    
Departamento C101 MATEMATICAS    

 

Requisitos previos

Haber adquirido las competencias correspondientes a las asignaturas de Cálculo y
Álgebra Lineal y Geometría.

 

Recomendaciones

Tener un hábito de estudio continuado.

 

Profesorado

Nombre Apellido 1 Apellido 2 C.C.E. Coordinador  
Mª. JOSE BENÍTEZ CABALLERO PROFESORA SUSTITUTA INTERINA N
MARIA VICTORIA REDONDO NEBLE Profesora Titular de Escuela Universitaria S

 

Competencias

Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.

Identificador Competencia Tipo
B01 Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmicos numéricos; estadísticos y optimización. ESPECÍFICA
CB1 Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio GENERAL
CB2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio GENERAL
CB3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética GENERAL
CB4 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado GENERAL
CB5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía GENERAL
G03 Capacidad para el aprendizaje de nuevos métodos y teorías, y versatilidad para adaptarse a nuevas situaciones basándose en los conocimientos adquiridos en materias básicas y tecnológicas. GENERAL
G04 Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y para comunicar y transmitir conocimientos, habilidades y destrezas GENERAL
T01 Capacidad para la resolución de problemas TRANSVERSAL
T07 Capacidad para el razonamiento crítico TRANSVERSAL

 

Resultados Aprendizaje

Identificador Resultado
R-05 Aplicar la Transformada de Laplace para la resolución de problemas de valores iniciales y modelos de Ingeniería.
R-06 Aplicar la trasformada rápida de Fourier para eliominar ruido de un conjunto de datos.
R-07 Clasficar Ecuaciones en Derivadas Parciales de acuerdo a su orden, linealidad o no linealidad, homogeneidad o no homogeneidad.
R-01 Comprender las definiciones de Integral de Trayectoria e Integral de Línea
R-02 Enunciar los Teoremas de Green, Stokes y Gauss.
R-03 Relacionar las Integrales de Superficie y las Integrales de Volumen
R-04 Resolver Ecuaciones Diferenciales Ordinarias de Primer Orden y de Orden Superior utilizando los métodos más comunes y mediante métodos numéricos
R-08 Resolver problemas de contorno usando Series de Fourier y métodos numéricos.

 

Actividades formativas

Actividad Detalle Horas Grupo Competencias a desarrollar
01. Teoría
MODALIDAD ORGANIZATIVA: Clases teóricas.
MÉTODO DE ENSEÑANZA-APRENDIZAJE: Método
expositivo. Estudio de casos.

En ellas el profesor expone las competencias y
objetivos a alcanzar. Se enseñan los contenidos
básicos del tema de forma estructurada. También
se presentan problemas y casos particulares con
la finalidad de aclarar y afianzar los
contenidos. Se realiza un seguimiento temporal de
la adquisición de conocimientos a través de
preguntas en clase.
30 CB1
02. Prácticas, seminarios y problemas
MODALIDAD ORGANIZATIVA: Clases prácticas.
MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de
problemas. Aprendizaje basado en la resolución de
ejercicios.

En ellas se desarrollan actiivdades de apliación
de los conocimientos a situaciones concretas que
permiten profundizar y ampliar los conceptos
expuestos en las clases teóricas, con un especial
énfasis en el autoaprendizaje. Los alumnos eligen
la técnica a utilizar, la aplicación del
procedimiento y la interpretación de resultados.
15 B01 CB2 G03 G04 T01 T07
03. Prácticas de informática
MODALIDAD ORGANIZATIVA: Prácticas de informática.
MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de
problemas haciendo uso de programas de cálculo
simbólico.

Sesiones en donde los alumnos resolveran un
conjunto de problemas utilizando las técnicas
descritas en 0.2 y usando aplicaciones
informáticas de un programa de cálculo simbólico.
15 B01 CB3 T01 T07
10. Actividades formativas no presenciales
MODALIDAD ORGANIZATIVA: Estudio y trabajo
individual.
MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Contrato de
aprendizaje.


Estas sesiones contemplan el estudio y trabajo
realizado por el alumno para comprender los
contenidos
impartidos en teoría, la resolución de ejercicios
y problemas, así como la realización de búsquedas
bibliográficas.

También contempla las horas de realización de los
tests de conocimientos básicos realizados a
través
del Campus Virtual de la asignatura, así como el
Trabajo de Prácticas de Informática.
86 B01 CB2 CB3
12. Actividades de evaluación
Examen final de la asignatura.
4 Grande B01 CB1 CB2 CB3 CB4 CB5 G04 T07

 

Evaluación

Criterios Generales de Evaluación

La calificación general de la asignatura será la suma de las puntuaciones
obtenidas en cada una de las actividades, según su ponderación y teniendo en
cuenta las consideraciones incluidas en el procedimiento de calificación.

 

Procedimiento de Evaluación

Tarea/Actividades Medios, Técnicas e Instrumentos Evaluador/es Competencias a evaluar
Pruebas para el Seguimiento de los de Conocimientos (test de Evaluación, Trabajos Grupales, Actividades Dirigidas) Test/ Prueba objetiva de elección múltiple/ Análisis documental/ Rubrica de valoración de informes
  • Profesor/a
  • Co-Evaluación
B01
Realización de Prueba de Progreso Prueba escrita con ejercicios teóricos y prácticos sobre el contenido de la asignatura.
  • Profesor/a
B01
Realización de una Prueba Final Prueba escrita compuesta por ejercicios de conocimientos teóricos y prácticos
  • Profesor/a
B01
Trabajo de realización de las prácticas de informática Análisis documental/ Informes de Prácticas
  • Profesor/a
B01

 

Procedimiento de calificación

Se evaluará la realización de diversas  actividades que se propondrán en el aula
(presenciales y no presenciales), la prueba de progreso que se realizará a lo
largo del curso  y la participación activa del alumno mediante la entrega de
tareas. También se valorará positivamente el adecuado comportamiento y la buena
disposición  en  clase.

En la prueba de progreso se valorará la adecuación, claridad, coherencia,
justificación y precisión en las respuestas.  Esta prueba será
escrita. Para que elimine materia, la calificación debe ser superior o igual a 5
sobre 10. En todo caso, se podría eliminar materia únicamente hasta la
convocatoria de febrero.

Los tests de conocimientos básicos supondrán un 10% de la calificación global de
la asignatura, y podrán ser propuestos y a realizar en el aula o  a través del
campus virtual de la asignatura.

Las Prácticas de Informática tratarán sobre diferentes
ejercicios a resolver con el correspondiente software utilizado  y supondrá un
10% de la calificación global de la asignatura.

Además, el alumno deberá realizar un Examen Final en el que se examine de  todos
los contenidos pendientes  de la asignatura,  siendo la Junta de Escuela la que
establezca la fecha y el lugar de realización del mismo.
La nota relativa a exámenes supondrá un 80% de la calificación final
de la asignatura.

Aquellos alumnos que no superen la asignatura en la convocatoria de febrero,
deberán ir a los exámenes de las convocatorias de junio y septiembre con todos
los contenidos. En estas convocatorias se tendrán en cuenta las calificaciones
obtenidas en los test de conocimientos básicos y las prácticas de informática,
realizados a lo largo de la impartición de la docencia, suponiendo un 20% de la
nota  final, mientras que la nota correspondiente a los exámenes repercutirá, al
igual que en la convocatoria de febrero, en un 80% de dicha nota final.

Se considerará que  han adquirido las competencias de la asignatura y por tanto
la han superado, aquellos alumnos que obtengan 5 o más puntos entre todas las
actividades evaluadas, siempre y cuando en la nota correspondiente a exámenes
obtengan como mínimo un 4 sobre 10. En caso contrario, la calificación que
aparecerá en el acta será la nota de los exámenes sobre 10.







 

Descripcion de los Contenidos

Contenido Competencias relacionadas Resultados de aprendizaje relacionados
            Tema 1: INTEGRALES DE LINEA
Definiciones. Gradiente de un campo escalar. Campos vectoriales. Cálculo de la integral de línea. Campos vectoriales
conservativos e independencia del camino. Teorema de Green

        
B01 R-01 R-02 RR
            Tema 2: INTEGRAL DE SUPERFICIE.
Divergencia y Rotacional de un campo vectorial. Área de una superficie. Integral de Superficie. Cálculo de integrales
de superficie. Flujo de un campo vectorial. Teorema de la divergencia o de Gauss. Teorema de Stokes.

        
B01 R-02 R-03
            Tema 3: ECUACIONES DIFERENCIALES ORDINARIAS (EDO)
Origen y definición. Conceptos fundamentales. Soluciones. Tipos de soluciones. Clasificación.

        
B01 R-04
            Tema 4: EDO DE PRIMER ORDEN
Teorema de existencia y unicidad de soluciones. Ecuaciones con variables separadas. Ecuaciones homogéneas. Ecuaciones
exactas y reducibles a exactas. Ecuaciones lineales. Ecuación de Bernoulli.

        
B01 R-04
            Tema 5: EDO LINEALES DE ORDEN SUPERIOR
Introducción. Teorema de existencia y unicidad. Tratamiento vectorial de las soluciones. Ecuaciones homogéneas con
coeficientes constantes. Método de los coeficientes  indeterminados y método de variación de los parámetros.
Cambios de variable. Ecuación de Euler. Reducción de un sistema de ecuaciones lineales a una ecuación de orden
superior. Sistemas lineales con coeficientes constantes.

        
B01 R-04
            Tema 6: RESOLUCIÓN NUMÉRICA DEL PROBLEMA DE CAUCHY PARA EDO. El método de Euler y sus variantes.

        
B01 R-04
            Tema 7: TRANSFORMADA DE LAPLACE
Introducción. Definición. Propiedades. Producto de Convolución. Transformada inversa. Propiedades. Aplicación a la
resolución de ecuaciones diferenciales e integrales y sistemas de ecuaciones lineales.

        
B01 R-05 R-04
            Tema 8: RESOLUCIÓN DE ECUACIONES DIFERENCIALES MEDIANTE SERIES DE POTENCIAS. INTRODUCCIÓN A LAS ECUACIONES EN
DERIVADAS PARCIALES Y A SU RESOLUCIÓN NUMÉRICA.
Aplicación de las series de potencias a la resolución de ecuaciones diferenciales. Introducción y clasificación de
las Ecuaciones en Derivadas Parciales. Resolución numérica de problemas de contorno.

        
B01 R-06 R-07 R-08

 

Bibliografía

Bibliografía Básica

- LARSON-HOSTETLER, Cálculo. vol II, Ed. McGraw-Hill.

- García, A., López, A., Rodríguez, G., Romero, S. y de la Villa, A., Cálculo II. Teoría y problemas de funciones de varias variables. Ed.Clagsa, 1996.

- Kreyszig, E. Matemáticas avanzadas para Ingeniería I y II. Ed. Limusa Wiley, 2000

- DENNIS G. ZILL. Ecuaciones diferenciales con aplicaciones de modelado. International Thomson, 1997.

- MARTINEZ DE LA ROSA, F. Matemáticas II. Servicio de Publicaciones de la Universidad de Cádiz.

- KISELOV, A.; KRASNOV, M.; MAKARENKO, G., Problemas de ecuaciones diferenciales ordinarias, Moscú, Ed. Mir 1984

- MARCELLÁN, F.; CASASÚS, L.; ZARZO, A., Ecuaciones diferenciales. Problemas lineales y aplicaciones, Madrid, Ed. McGraw-Hill,1990

- GEORGE F. SIMMONS, Ecuaciones Diferenciales, con aplicaciones y notas históricas. Madrid. Ed. McGraw-Hill,1998

- GLIN JAMES, Matemáticas avanzadas para Ingeniería. México. Ed. Pearson Educación. 2002

-JESÚS SAN MARTÍN MORENO, VENANCIO TOMEO PERUCHA, ISAÍAS UÑA JUÁREZ, Métodos
Matemáticos. Ampliación de Matemáticas para Ciencias e Ingeniería. Thomson 2005.  
     
-VVAA Métodos matemáticos. Ed.Thomson.2005

-MANUEL LÓPEZ RODRÍGUEZ. Problemas Resueltos de Ecuaciones Diferenciales. Ed.  Thomson.2006

-RICHARD BRONSON, GABRIEL COSTA  Ecuaciones Diferenciales. Schaum. Ed. Mc Graw Hill. 2008

- HENRY RICARDO. Ecuaciones Diferenciales: una introducción moderna. Ed. Reverte. 2008

 

-R.L. Burden, J. D. Faires. Análisis Numérico. International Thomson Editores, S.A., 2002.

-D. Kincaid, W. Cheney. Análisis Numérico. Addison-Wesley Iberoamericana, Wilmington 1994.

-F. Guillén González, A. Doubova Krasotchenko. Un Curso de Cálculo Numérico: Interpolación, Aproximación, Integración y Resolución de Problemas Diferenciales. Sevilla, España. Servicio de Publicaciones Universidad de Sevilla. 2007.

 

 

 

Bibliografía Específica

- Manual de prácticas de matemáticas con Maxima. A. J.  Arriaza, L. del Águila, F. Rambla, M. V. Redondo, J. R. Rodríguez. G. Viglialoro. Servicio de Publicaciones de la Universidad de Cádiz, 2015.

 

 

El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.