Fichas de asignaturas 2016-17
![]() |
VARIABLE COMPLEJA |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 40209014 | VARIABLE COMPLEJA | Créditos Teóricos | 4.5 |
Título | 40209 | GRADO EN MATEMÁTICAS | Créditos Prácticos | 3 |
Curso | 3 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
Requisitos previos
El Plan de Estudios no establece ningún prerrequisito para poder cursar esta asignatura, no obstante ver las recomendaciones.
Recomendaciones
Es muy conveniente poseer algunos conocimientos de análisis de funciones de una variable real (derivadas, integrales, series de potencias), topología, integración sobre caminos y análisis en dos variables reales. Además, dado que se realizarán unas prácticas con el programa Matemática aplicado al cálculo de funciones de variable compleja unos conocimientos básicos del mismo u otro programa simbólico similar serán bienvenidos.
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
MARIA DEL CARMEN | PEREZ | MARTINEZ | PROFESOR SUSTITUTO INTERINO | S |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB1 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio | BÁSICA |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vacación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | BÁSICA |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | BÁSICA |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado | BÁSICA |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | BÁSICA |
CE1 | Comprender y utilizar el lenguaje matemático. Adquirir la capacidad para enunciar proposiciones en distintos campos de las matemáticas, para Comprender y utilizar el lenguaje matemático. Adquirir la capacidad para enunciar proposiciones en distintos campos de las matemáticas, para construir demostraciones y para transmitir los conocimientos matemáticos adquiridos. | ESPECÍFICA |
CE2 | Conocer demostraciones rigurosas de algunos teoremas clásicos en distintas áreas de las matemáticas. | ESPECÍFICA |
CE3 | Asimilar la definición de un nuevo objeto matemático, en términos de otros ya conocidos y ser capaz de utilizar este objeto en diferentes contextos. | ESPECÍFICA |
CE4 | Saber abstraer las propiedades estructurales (de objetos matemáticos, de la realidad observada y de otros ámbitos) distinguiéndolas de aquellas puramente ocasionales y poder comprobarlas con demostraciones o refutarlas con contraejemplos, así como identificar errores en razonamientos incorrectos. | ESPECÍFICA |
CE5 | Resolver problemas matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos. | ESPECÍFICA |
CE6 | Proponer, analizar, validar e interpretar modelos de situaciones reales sencillas, utilizando las herramientas matemáticas más adecuadas a los fines que se persigan. | ESPECÍFICA |
CE7 | Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, visualización gráfica, optimización u otras para experimentar en matemáticas y resolver problemas | ESPECÍFICA |
CG1 | Utilizar herramientas de búsqueda de recursos bibliográficos. | GENERAL |
CG2 | Poder comunicarse en otra lengua de relevancia en el ámbito científico. | GENERAL |
CG3 | Comprobar o refutar razonadamente los argumentos de otras personas. | GENERAL |
Resultados Aprendizaje
Identificador | Resultado |
02 | 02. Conocer y manejar los aspectos básicos de las sucesiones y series de funciones, series de potencias y funciones analíticas. |
11 | 11. Conocer los aspectos esenciales de las funciones analíticas de variable compleja; utilizar la relación existente entre las funciones holomorfas y las funciones analíticas. |
12 | 12. Calcular residuos y utilizarlos para la determinación de integrales reales. |
13 | 13. Manejar los aspectos esenciales de un paquete de cálculo simbólico. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | Se desarrollarán los temas que corresponden al programa de la asignatura ilustrándolos con numerosos ejemplos y resolviendo problemas sencillos. |
36 | CB1 CE1 CE2 CE3 CE4 | |
02. Prácticas, seminarios y problemas | Los alumnos abordarán, dirigidos por el profesor, problemas teórico-prácticos referentes a aplicar los resultados presentados en teoría. |
12 | CB1 CB2 CB3 CB5 CE1 CE5 CG3 | |
03. Prácticas de informática | Los alumnos abordarán, dirigidos por el profesor, problemas referentes a aplicar los métodos expuestos en teoría con ayuda de un programa simbólico (Mathematica) |
12 | CB2 CB4 CB5 CE1 CE3 CE4 CE5 CE7 CG3 | |
10. Actividades formativas no presenciales | Los alumnos deberan dedicar aproximadamente 40 horas de estudio para asimilar los contenidos explicados en clase y otras 40 horas de trabajo personal fuera de clase para asimilar los métodos desarrollados en prácticas de ordenador |
80 | CB2 CB4 CB5 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CG1 CG3 | |
11. Actividades formativas de tutorías | Para resolver las posibles dudas estimamos que los alumnos deben dedicar alrededor de 6 horas a tutorias presenciales con el profesor |
6 | ||
12. Actividades de evaluación | SE realizará un examen teórico-practico en que el alumno deberá poner de manifiesto que sabe razonar en el marco de la asignatura, que maneja los conceptos básicos y sus propiedades eligiendo la forma mas adecuada para resolver los problemas y aplicando los métodos estudiados |
4 | CB2 CB4 CB5 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CG3 |
Evaluación
Criterios Generales de Evaluación
La evaluación es continua y los instrumentos de evaluación son los siguientes: - Pruebas presenciales parciales a lo largo del desarrollo de la asignatura. - Realización de prácticas con el ordenador. En las fechas fijadas por el centro se realizarán las recuperaciones de las pruebas presenciales.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Pruebas presenciales parciales |
|
||
Realización de prácticas con el ordenador |
|
Procedimiento de calificación
- Realización de ejercicios colocados en el campus virtual con un plazo de presentación (10%). - Pruebas presenciales parciales (90%).
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
Tema 1 -El cuerpo de los números complejos, topología, el plano ampliado. Funciones de variable compleja, continuidad y derivabilidad. Funciones holomorfas, Ecuaciones de Cauchy-Riemann. Aplicaciones conformes. Funciones elementales. Tema 2 -Integración, homotopía. Diversas formulaciones del teorema de Cauchy-Goursat. Formula integral de Cauchy, teorema de Liouville, teorema de Morera, principio del módulo máximo, lema de Schwarz. Tema 3 -Sucesiones y series de funciones complejas, series de potencias, funciones analíticas. Serie de Taylor, principio de identidad, principio de simetría. Singularidades aisladas, serie de Laurent. Teorema de los residuos, principio del argumento, teorema de Rouche, aplicaciones. |
CB2 CB5 CE1 CE2 CE3 CE4 CE5 CE6 | 02 |
Bibliografía
Bibliografía Básica
Marsden J.E. Hoffman M.J. Basic Complex Analysis 2ª ed, Freeman 1987
Bibliografía Específica
Ahlfors L.V. Complex Analysis 3ª ed, McGraw-Hill 1979
Conway, J. B. Functions of one complex variable, Springer 1973
Markushevich A.I. Teoría de las funciones analíticas. Mir 1970
Bibliografía Ampliación
Hille E. Analitic function theory, Chelsea 1977
Lang S. Complex Analysis 3ª ed, Springer Verlag 1993
Needham T. Visual complex analysis, Oxford Univ. Press 1997
Volkovyski L. Lunts G. Aramanovich I. Problemas sobre la teoría de variable
compleja, Mir 1972
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.