Fichas de asignaturas 2016-17
![]() |
METODOS NUMERICOS II |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 40209026 | METODOS NUMERICOS II | Créditos Teóricos | 4.5 |
Título | 40209 | GRADO EN MATEMÁTICAS | Créditos Prácticos | 3 |
Curso | 2 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
Requisitos previos
Los de acceso al grado
Recomendaciones
Haber cursado las asignaturas Cálculo Infinitesimal I y II y Métodos Numéricos I. Tener conocimientos básicos de programación y de algún lenguaje de programación orientado al cálculo numérico.
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CE1 | Comprender y utilizar el lenguaje matemático. Adquirir la capacidad para enunciar proposiciones en distintos campos de las matemáticas, para construir demostraciones y para transmitir los conocimientos matemáticos adquiridos. | ESPECÍFICA |
CE2 | Conocer demostraciones rigurosas de algunos teoremas clásicos en distintas áreas de las matemáticas. | ESPECÍFICA |
CE3 | Asimilar la definición de un nuevo objeto matemático, en términos de otros ya conocidos y ser capaz de utilizar este objeto en diferentes contextos. | ESPECÍFICA |
CE4 | Saber abstraer las propiedades estructurales (de objetos matemáticos, de la realidad observada y de otros ámbitos) distinguiéndolas de aquellas puramente ocasionales y poder comprobarlas con demostraciones o refutarlas con contraejemplos, así como identificar errores en razonamientos incorrectos. | ESPECÍFICA |
CE5 | Resolver problemas matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos. | ESPECÍFICA |
CE6 | Proponer, analizar, validar e interpretar modelos de situaciones reales sencillas, utilizando las herramientas matemáticas más adecuadas a los fines que se persigan. | ESPECÍFICA |
CE7 | Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, visualización gráfica, optimización u otras para experimentar en matemáticas y resolver problemas. | ESPECÍFICA |
CE8 | Desarrollar programas que resuelvan problemas matemáticos utilizando para cada caso el entorno computacional adecuado. | ESPECÍFICA |
CG5 | Utilizar con fluidez la informática a nivel de usuario. | GENERAL |
CT1 | Saber gestionar el tiempo de trabajo. | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R.6 | Conocer y saber aplicar los métodos iterativos elementales para la resolución de ecuaciones y sistemas de ecuaciones no lineales. |
R.9 | Conocer y saber aplicar los métodos numéricos elementales de resolución de ecuaciones diferenciales ordinarias. |
R.7 | Entender el concepto y conocer las técnicas habituales de interpolación y ajuste polinomial. |
R.5 | Saber localizar y aproximar ceros de funciones |
R.8 | Saber obtener y aplicar las fórmulas elementales de derivación e integración numérica. |
R.10 | Saber resolver problemas simples con técnicas numéricas mediante el ordenador. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
03. Prácticas de informática | Los alumnos abordaran, asistidos por el profesor, algunos problemas referentes a aplicar los métodos expuestos en teoría a la resolución de problemas concretos. |
24 | Reducido | CB2 CB3 CB4 CE5 CE6 CE7 CE8 CG5 CT1 |
08. Teórico-Práctica | 36 | |||
10. Actividades formativas no presenciales | Los alumnos deberán dedicar aproximadamente unas 40 horas de estudio para asimilar los contenidos que se hayan explicado en clase y unas 42 horas de trabajo personal fuera de clase para asimilar los métodos desarrollados en las claese prácticas procediendo a abordar otros problemas, que puede encontrar en la bibliografía de la asignatura. |
79 | CB1 CB2 CB3 CB4 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8 CG1 CG5 CT1 | |
11. Actividades formativas de tutorías | Para resolver las dudas que le puedan surgir al alumno en el estudio de los temas y en el desarrollo de las prácticas, estimamos que deberá acudir a las tutorias de teoría o prácticas una media de 4 horas a lo largo del curso. |
4 | ||
12. Actividades de evaluación | Se realizará un examen de carácter teórico-práctico en el que el alumno deberá poner de manifiesto que sabe razonar dentro del marco de la asignatura, manejando los conceptos básicos y sus propiedades, eligiendo el método más adecuado para un problema o aplicando los métodos estudiados. |
4 | Grande | CB1 CB2 CB3 CB4 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8 CG5 CT1 |
13. Otras actividades | Se propondrán algunos ejercicios de caracter teórico-práctico que cada alumno deberá realizar de forma individual o en grupo merced a los cuales el alumnado podrá ir comprobando si su aprendizaje de la asignatura y su adquisición de competencias están siendo satisfactorios. La calificación de estos ejercicios supondrá un 30% de la calificación de la asignatura. |
3 | Grande |
Evaluación
Criterios Generales de Evaluación
El alumno debe poner de manifiesto su conocimiento de los conceptos estudiados en la asignatura y su capacidad para aplicar los métodos numéricos a problemas concretos. Deberá ser capaz de elegir el método más adecuado para cada tipo de problema y de programar algoritmos eficientes para resolverlo numéricamente.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Algunos ejercicios teórico-prácticos que se realizaran de forma individual o en grupo | Ordenadores portátiles |
|
|
Examen teórico-práctico |
|
Procedimiento de calificación
La calificación media de los ejercicios propuestos a lo largo del curso supondrá un 30% de la calificación final; el 70% restante de la calificación quedará determinada por la nota del examen. La calificación final quedará condicionada a la superación (en un porcentaje mínimo) de los ejercicios prácticos y del examen final.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
1. Métodos numéricos en ecuaciones de una variable: separación de soluciones, métodos de la bisección, la "regula-falsi", el punto fijo, Newton y la secante. Introducción a sistemas de ecuaciones no lineales. |
CB1 CB2 CB3 CB4 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8 CG1 CG5 CT1 | R.6 R.5 R.10 |
2. Interpolación y aproximación de funciones: interpolación de lagrange y de Hermite. Interpolación mediante funciones ranura. Aproximación mediante mínimos cuadrados. |
CB1 CB2 CB3 CB4 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8 CG1 CG5 CT1 | R.7 R.8 R.10 |
3. Métodos de integración numérica: Reglas de cuadratura de Newton-Côtes, fórmulas compuestas de cuadratura. Reglas de cuadratura gaussianas. |
CB1 CB2 CB3 CB4 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8 CG1 CG5 CT1 | R.8 R.10 |
4.Problema del valor inicial para ecuaciones diferenciales de primer orden: Existencia y unicidad de solución. Métodos de un paso. Mejora de las aproximaciones mediante extrapolación. Métodos multipaso. Propiedades de convergencia, consistencia y estabilidad. |
CB1 CB2 CB3 CB4 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8 CG1 CG5 CT1 | R.9 R.10 |
5. Métodos numéricos en problemas de valores iniciales para sistemas de dos ecuaciones o ecuaciones de segundo orden: Métodos de un paso y métodos multipaso. |
CB1 CB2 CB3 CB4 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8 CG1 CG5 CT1 | R.9 R.10 |
Bibliografía
Bibliografía Básica
- Burden, R.L., Faires, J.D., Análisis Numérico. Thomson. 2004.
- Kincaid, D., Cheney, W., Análisis Numérico. Las matemáticas del cálculo científico. Addison-Wesley-Iberoamericana 1994.
- Infante del Río, J.A., Rey Cabezas, J.M., Métodos numéricos. Teoría, problemas y prácticas con MATLAB. Ed. Pirámide.
- Doubova, A., Guillén González, F. Un Curso de Cálculo Numérico. Interpolación, Aproximación, Integración y Resolución de Ecuaciones Diferenciales. Secretariado de Publicaciones - Univ. de Sevilla - 2007.
- Díaz Moreno, J.M., Benítez Trujillo, F. Introducción a los métodos numéricos para la resolución de ecuaciones. Servicio de Publicaciones de la Universidad de Cádiz, 1998.
Bibliografía Ampliación
- Isaacson, E., Keller, H.B., Analysis of Numerical Methods. Dover 1994.
- Henrici, P.; Discrete variable methods in ordinary differential equations. John-Wiley 1962.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.