Fichas de asignaturas 2016-17
![]() |
ÁLGEBRA Y GEOMETRÍA |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 41414002 | ÁLGEBRA Y GEOMETRÍA | Créditos Teóricos | 5 |
Título | 41414 | GRADO EN NÁUTICA Y TRANSPORTE MARÍTIMO | Créditos Prácticos | 2.5 |
Curso | 1 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
Requisitos previos
ninguno.
Recomendaciones
Haber cursado el bachillerato cientifico tecnologico.
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
JUAN VICENTE | SANCHEZ | GAITERO | PROFESOR ASOCIADO | S |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B1 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización | GENERAL |
Resultados Aprendizaje
Identificador | Resultado |
R5 | Aprender los conceptos básicos de la geometría diferencial de curvas alabeadas. Llegar a conocer las superficies cónicas. |
R2 | Dominar los conceptos básicos de los espacios vectoriales y de los espacios vectoriales euclídeos de dimensión finita. |
R1 | Haber aprendido a operar con matrices, determinantes y sistemas lineales principalmente mediante las operaciones elementales. |
R3 | Llegar a saber calcular los valores y vectores propios de una matriz cuadrada y conseguir encontrarle su forma canónica de Jordan. |
R4 | Saber reducir la ecuación de una cónica o cuádrica. Llegar a dibujar la cónica y a clasificar la cuádrica. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: Clases teóricas. MÉTODO EXPOSITIVO: lección magistral. El profesor presenta los contenidos básicos sobre los temas, se resuelven ejercicios que refuercen los conocimientos teóricos y se proponen ejercicios y problemas para ser resueltos por el alumno. |
40 | Grande | B1 |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: clases prácticas. MÉTODO de ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. Los alumnos podrán trabajar individualmente o en grupitos. |
10 | Mediano | B1 |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de informática. MÉTODO de ENSEÑANZA-APRENDIZAJE: En estas sesiones se resuelven los ejercicios y problemas de las prácticas anteriores y otros similares con más dimensión y volumen de cuentas. |
10 | Reducido | B1 |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual. MÉTODO de ENSEÑANZA-APRENDIZAJE: son sesiones de trabalo del alumno para comprender los contenidos impartidos en las clases teóricas, en clases de problemas y en las prácticas de ordenador. El alumno tendrá que hacer eventualmente consultas bibliográficas. |
78 | Reducido | B1 |
11. Actividades formativas de tutorías | MODADLIDAD ORGANIZATIVA: Tutorías y seminarios. Sesiones dedicadas a orientar al alumno sobre cómo abordar la resolución de ejercicios y problemas relativos al desarrollo de la asignatura. |
6 | Reducido | B1 |
12. Actividades de evaluación | Sesiones donde se realizan las diferentes pruebas de progreso periódico del alumno. |
6 | Grande | B1 |
Evaluación
Criterios Generales de Evaluación
La calificación global de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación, siempre que se alcance una nota mínima de 4 en cada una de las pruebas de progreso, y en la prueba final (para aquellos alumnos que tengan que hacerla). En caso contrario la calificación global será inferior a 5. Superarán la asignatura aquellos alumnos cuya calificación global sea igual o superior a 5.Cualquier error de concepto en los exámenes supondrá la calificación de cero puntos en el mismo.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Prueba final. | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura. |
|
B1 |
Prueba informática. | Trabajo de realización de las pruebas de informática. |
|
B1 |
Pruebas de progreso. | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura. En caso de que la temporalización de la asignatura lo aconsejara estas pruebas podrían no realizarse siendo sustituidas por la realización exclusiva de examenes finales |
|
B1 |
Procedimiento de calificación
Se evaluará: a)La realización de diversas trabajos de prácticas de informática que se propondrán en el aula. Los trabajos de realización de las prácticas de informática tratarán sobre diferentes ejercicios a resolver con el correspondiente software utilizado,y supondrá un 10% de la calificación global de la asignatura. b)La realización de pruebas de progreso que se harán a lo largo del curso. En las pruebas de progreso se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. Estas pruebas serán usualmente escritas. Supondrán un 80% de la calificación global de la asignatura. El alumno que no supere una, o más de una, de las pruebas de progreso anteriores, deberá realizar un examen final que se valorará de la misma forma que las pruebas de progreso (suponiendo un 80% de la calificación final), siendo la Junta de Escuela quien establezca la fecha y el lugar de realización. Cualquier error de concepto en los exámenes supondrá la calificación de cero puntos en el mismo. Para poder presentarse a las pruebas de progreso será necesario cumplir los siguientes requisitos: -haber obtenido 4 o más puntos en la calificación de las pruebas de progreso realizadas anteriormente -haber realizado las practicas de la asignatura. -haber asistido a las clases al menos un 50% de las veces que se controle la asistencia o haber sido acordada una justificación de ausencia entre profesor y alumno con antelación a la realización de la prueba. -haber contestado a los cuestionarios/tareas puestos con antelación a la fecha de examen en el campus virtual de la asignatura. c)La participación activa del alumno mediante la entrega de tareas o pruebas de conocimientos básicos. Dichas tareas suponen un 10% de la calificación global de la asignatura.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
BLOQUE 1.- MATRICES, DETERMINANTES Y SISTEMAS Tema 1.- Matrices y Determinantes Definición de matriz.- Operaciones lineales con matrices.- Producto de matrices.- Matriz traspuesta. Propiedades.- Tipos de matrices.- Matriz inversa. Unicidad y propiedades.- Operaciones elementales. Matrices elementales.- Matrices equivalentes.- Forma canónica de Hermite.- Método de Gauss-Jordan para el cálculo de la inversa de una matriz.- Rango de una matriz.- Cálculo del rango mediante operaciones elementales.- Definición y propiedades del determinante de una matriz cuadrada.- Aplicación de los determinantes. Tema 2.- Sistemas de Ecuaciones Lineales y no Lineales Terminología y notaciones.- Sistemas equivalentes.- Método de eliminación de Gauss.- Teorema de Rouché-Fröbenius.- Sistemas homogéneos: Espacio nulo de una matriz.- Resolución de sistemas: métodos e iterativos. |
B1 | R1 |
BLOQUE 2.- ESPACIO VECTORIAL Y EUCLIDEO Tema 3.- Espacio Vectorial R n Definición y propiedades.- Dependencia e independencia lineal. Propiedades.- Base y dimensión del espacio vectorial Rn.- Coordenadas de un vector.- Cambio de base en Rn.- Subespacios vectoriales. Caracterización.- Ecuaciones de un subespacio.- Base y dimensión de un subespacio. Tema 4.- Espacio Vectorial Euclídeo R n Producto escalar.- Módulo de un vector y ángulo entre vectores.- Bases ortogonales y ortonormales.- Método de ortonormalización de Gram-Schmidt. |
B1 | R2 |
BLOQUE 3.- DIAGONALIZACIÓN DE MATRICES. Tema 5.- Diagonalización de Matrices Autovalores y autovectores de una matriz cuadrada.- Propiedades.- Matriz diagonalizable: Diagonalización.- Diagonalización de matrices simétricas por semejanza ortogonal. Potencias de una matriz diagonalizable.- Forma Canónica de Jordan para matrices de orden dos y tres. |
B1 | R3 |
BLOQUE 4.- CÓNICAS Y CUÁDRICAS Tema 6.- Cónicas Definición de cónica. Ecuación matricial.- Ecuación reducida de una cónica.- Clasificación y elementos principales de las cónicas.-Estudio de las cónicas ordinarias. Tema 7.- Cuádricas Definición de cuádrica. Ecuación matricial.- Ecuación reducida de una cuádrica.- Clasificación de las cuádricas.- Estudio de las cuádricas ordinarias. |
B1 | R4 |
BLOQUE 5.- CURVAS Y SUPERFICIES Tema 8.- Curvas Planas Concepto de curva plana.- Expresiones de una curva: paramétrica, explícita e implícita.- Tangente y normal en un punto de una curva.- Puntos singulares y puntos ordinarios.- Curvas planas en coordenadas polares. Tema 9.- Curvas Alabeadas Definición de curva en el espacio.- Ecuaciones de una curva.- Punto ordinario y punto singular.- Longitud de un arco de curva.- Triedro y Fórmulas de Frenet.- Recta tangente, normal y Binormal.- Curvatura y torsión.- Planos osculador, normal y rectificante. Tema 10.- Superficies Concepto de superficie.- Plano tangente y recta normal a una superficie.- Superficies de revolución y de traslación.- Superficies cónicas y cilíndricas. |
B1 | R5 |
Bibliografía
Bibliografía Básica
Howard Anton. Introducción al Algebra Lineal. Limusa. Mexico 1998.
De la Villa, A. (1998): Problemas de Álgebra con esquemas teóricos. Ed. Clagsa, Madrid.
Merino, L. y Santos, E. Álgebra Lineal con métodos elementales. Ed. Thomson Paraninfo, Madrid 2006.
De Burgos, J. (2006): Álgebra Lineal y Geometría Cartesiana. Ed. McGraw-Hill, Madrid.
Grossman, S. (2007): Álgebra lineal con aplicaciones. Ed. McGraw-Hill. Mexico.
López, A. y De la Villa, A. (1997): Geometría Diferencial. Ed. Clagsa, Madrid.
Costa, A.; Gamboa, M. y Porto, A. (2005): Notas de Geometría Diferencial de Curvas y Superficies
. Ed. Sanz y Torres, Madrid.
Ariza, O.; Camacho, J.C. y Sánchez, A. (2000): Álgebra lineal y Geometría en Escuelas Técnica. Ed.
Los Autores.
De Burgos, J. (1994): Curso de Álgebra y Geometría. Ed. Alhambra Longman, Madrid.
De Diego, B.; Gordillo, E. y Valeiras, G. (1986): Problemas de Álgebra Lineal. Ed. Deimos.
Rubio, R.; Ríder, A. y Raya, A. (2007): Álgebra y Geometría lineal. Ed. Reverte, Madrid.
Costa, A., Gamboa, M., Porto, A. (2005): Ejercicios de Geometría Diferencial de Curvas y Superficies
. Ed. Sanz y Torres, Madrid.
Bibliografía Ampliación
Rojo, J. y Martín, I. (1994): Ejercicios y Problemas de Álgebra Lineal. Ed McGraw-Hill, Madrid
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.