Fichas de asignaturas 2016-17
![]() |
MATEMÁTICA DISCRETA |
![]() ![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Competencias |
![]() |
| |
Resultados Aprendizaje |
![]() |
| |
Actividades Formativas |
![]() |
| |
Sistemas de Evaluación |
![]() |
| |
Contenidos |
![]() |
| |
Bibliografía |
![]() |
Código | Nombre | |||
Asignatura | 21714010 | MATEMÁTICA DISCRETA | Créditos Teóricos | 4.5 |
Título | 21714 | GRADO EN INGENIERÍA INFORMÁTICA | Créditos Prácticos | 3 |
Curso | 1 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Si desea visionar el/los fichero/s referente/s al cronograma sobre el número de horas de los estudiantes pulse sobre su nombre:
Requisitos previos
No se necesita ninguno.
Recomendaciones
El alumno debería repasar todos los conceptos relacionados con la divisibilidad.
Profesorado
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador | |
FRANCISCO JOSE | GONZALEZ | GUTIERREZ | Profesor Titular Escuela Univ. | S |
![]() |
Competencias
Se relacionan aquí las competencias de la materia/módulo o título al que pertenece la asignatura, entre las que el profesorado podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | GENERAL |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | GENERAL |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | GENERAL |
CG09 | Capacidad para resolver problemas con iniciativa, toma de decisiones, autonomía y creatividad. Capacidad para saber comunicar y transmitir los conocimientos, habilidades y destrezas de la profesión de Ingeniero Técnico en Informática. | GENERAL |
CG13 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; cálculo diferencial e integral; métodos numéricos; algorítmica numérica; estadística y optimización | GENERAL |
CG15 | Capacidad para comprender y dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para la resolución de problemas propios de la ingeniería. | GENERAL |
CT1 | Trabajo en equipo: capacidad de asumir las labores asignadas dentro de un equipo, así como de integrarse en él y trabajar de forma eficiente con el resto de sus integrantes | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R4 | Conocer el concepto de función, saber distinguir las funciones invertibles y ser capaz de calcular su inversa. |
R2 | Manejar con fluidez los conceptos básicos de la teoría de conjuntos y las distintas operaciones entre ellos. |
R6 | Resolver ecuaciones de recurrencia lineales. |
R5 | Resolver ejercicios utilizando el método de demostración por inducción. |
R7 | Resolver todo tipo de ejercicios relacionados con la Teoría de Números. |
R1 | Saber lógica proposicional y lógica de predicados y ser capaz de aplicarlas para la argumentación y demostración. |
R3 | Ser capaz de ordenar y clasificar los elementos de un conjunto en base a una relación definida en el mismo. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | Mediante la modalidad organizativa de clases teóricas y siguiendo el método de enseñanza-aprendizaje de lección magistral se impartirán las distintas lecciones teóricas que conforman el contenido de la asignatura. |
36 | Grande | CG09 CG15 CT1 |
02. Prácticas, seminarios y problemas | La modalidad organizativa será la de clases prácticas. El método de enseñanza-aprendizaje consistirá en la resolución de ejercicios y el aprendizaje basado en problemas. Se desarollarán actividades de aplicación de los conocimientos teóricos a situaciones concretas que permitan profundizar y ampliar los conceptos, poniendo especial énfasis en el autoaprendizaje. Los alumnos desarrollarán las soluciones adecuadas, la aplicación de procedimientos y la interpretación de resultados. |
24 | Mediano | CG09 CG15 |
10. Actividades formativas no presenciales | Modalidad organizativa: Estudio y trabajo individual/autónomo. Métodos de enseñanza-aprendizaje: Contrato de aprendizaje. Estas sesiones contemplan el trabajo realizado por el alumno para comprender los contenidos impartidos en teoría, la resolución de ejercicios y problemas, así como la realización de búsquedas bibliográficas. |
86 | CG09 CG15 | |
12. Actividades de evaluación | Sesiones donde se realizarán diferentes pruebas del progreso del alumno. |
4 | Grande | CG09 CG15 |
Evaluación
Criterios Generales de Evaluación
- Los criteros esenciales en la valoración de un ejercicio serán el razonamiento al plantearlo y la ejecución del mismo según las técnicas aprendidas. - Describir someramente el planteamiento sin aportar una resolución adecuada no será suficiente para obtener la completa valoración de los ejercicios propuestos. - La mera utilización de fórmulas no será suficiente para la obtención de una evaluación positiva de cualquier ejercicio propuesto, será imprescindible aportar una deducción razonada del mismo. - Se valorará de forma positiva la presentación clara y ordenada de los ejercicios que se propongan para su evaluación.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Realización de las pruebas no presenciales. | Prueba escrita con ejercicios teóricos y prácticos sobre los contenidos de la asignatura. |
|
B03 G09 T09 |
Realización de las pruebas presenciales. | Prueba escrita compuesta por ejercicios prácticos sobre los contenidos de la asignatura. |
|
B03 CG02 CG03 CG05 G09 T09 |
Realizar y entregar las pruebas no presenciales en plazo y forma. | El profesor controlará que la entrega de los ejercicios propuestos como pruebas no presenciales se realice en el plazo y la forma estipulados. |
|
B03 G09 T09 |
Procedimiento de calificación
Se realizará una prueba presencial por cada una de las unidades temáticas que integran la asignatura y, además, se propondrán una o dos pruebas no presenciales por cada lección incluida en la misma. La nota en cada unidad temática se obtendrá en base al criterio siguiente: - Pruebas no presenciales: 20% de la nota. - Prueba presenciales: 80% de la nota. Una unidad temática se considerará aprobada si la puntuación obtenida es mayor o igual a 5 puntos. El aprobado en cualquier unidad temática es válido para todo el curso académico. Aprobará la asignatura el alumno que apruebe todas y cada una de las unidades temáticas y su calificación final será la media de las notas obtenidas en cada una de ellas. El alumno que suspenda (nota menor que 5 puntos) alguna(s) de las unidades temáticas obtendrá como calificación final en la convocatoria correspondiente, la media de las notas obtenidas en las unidades suspensas. El examen final tiene la consideración de "prueba presencial", es decir la nota máxima que puede obtenerse es de un 80% de la nota total.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
Unidad Temática I. Lógica Matemática Lección 1. Lógica de Proposiciones. Lección 2. Lógica de Predicados. Unidad Temática II. Teoría de Números Lección 3. Divisibilidad. Algoritmo de la División. Lección 4. Teorema Fundamental de la Aritmética. Lección 5. Ecuaciones Diofánticas. Lección 6. Aritmética en Zm. Unidad Temática III. Conjuntos. Relaciones y Funciones. Lección 7. Conjuntos. Generalidades. Lección 8. Operaciones con Conjuntos Lección 9. Relaciones. Lección 10. Relaciones de Orden. Lección 11. Relaciones de Equivalencia. Lección 12. Funciones Unidad Temática IV. Recurrencia Lección 13. Inducción. Lección 14. Ecuaciones de Recurrencia. Generalidades. Lección 15. Ecuaciones de Recurrencia Lineales. Lección 16. Ecuaciones de Recurrencia Lineales Homogéneas. Lección 17. Ecuaciones de Recurrencia Lineales no Homogéneas. |
R4 R2 R6 R5 R1 R3 |
Bibliografía
Bibliografía Básica
- Matemáticas Discreta y Combinatoria.Ralph P. Grimaldi.Addison-Wesley Iberoamericana.
- Elementos de Matemática Discreta. E. Bujalance, J. A. Bujalance, A. F. Costa y E. Martínez. U.N.E.D. Editorial Sanz y Torres.
- Matemática Discreta y sus aplicaciones. Kenneth H. Rosen. Mc Graw Hill.
- Matemática Discreta. Félix García Merayo. 3ª Edición. Editorial Paraninfo.
- Apuntes de Matemática Discreta. Francisco José González Gutiérrez. Departamento de Matemáticas. Universidad de Cádiz.
Bibliografía Específica
- Problemas de Matemática Discreta. E. Bujalance, J. A. Bujalance, A. F. Costa y E. Martínez. U.N.E.D. Editorial Sanz y Torres.
- 201 Problemas resueltos de Matemática Discreta. Vicente Meavilla Seguí. Prensas Universitarias de Zaragoza.
- Problemas Resueltos de Matemática Discreta. Félix García Merayo. Gregorio Hernández Peñalver. Antonio Nevot Luna. Editorial Thomson.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.