Fichas de asignaturas 2011-12
![]() |
CÁLCULO |
![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Situación |
![]() |
| |
Competencias |
![]() |
| |
Objetivos |
![]() |
| |
Programa |
![]() |
| |
Actividades |
![]() |
| |
Metodología |
![]() |
| |
Distribucion |
![]() |
| |
Técnicas Docentes |
![]() |
| |
Evaluación |
![]() |
| |
Recursos Bibliográficos |
![]() |
Código | Nombre | |||
Asignatura | 1709014 | CÁLCULO | Créditos Teóricos | 3 |
Descriptor | CALCULUS | Créditos Prácticos | 4,5 | |
Titulación | 1709 | INGENIERÍA TÉCNICA INDUSTRIAL, ESPECIALIDAD EN ELECTRICIDAD | Tipo | Troncal |
Departamento | C101 | MATEMATICAS | ||
Curso | 1 | |||
Créditos ECTS | 6 |
Para el curso | Créditos superados frente a presentados | Créditos superados frente a matriculados |
2007-08 | 68.8% | 51.2% |
ASIGNATURA OFERTADA SIN DOCENCIA
Pulse aquí si desea visionar el fichero referente al cronograma sobre el número de horas de los estudiantes.
Profesorado
Luis Lafuente Molinero
Situación
Prerrequisitos
Los alumnos han de estar familiarizados con los temas de sucesiones, límites, continuidad, derivabilidad e integración de funciones de una variable. Estos contenidos se incluyen en el programa de la asignatura, pero sólo como temas a repasar.
Contexto dentro de la titulación
Esta asignatura se imparte durante el primer cuatrimestre del primer curso de la titulación.
Recomendaciones
Los alumnos deben haber cursado la opción científico-técnica del Bachillerato. Cursar con éxito la asignatura implica que los alumnos hayan adquirido la suficiente familiaridad y destreza en los siguientes contenidos elementales estudiados en Bachillerato: * Habilidad en el cálculo de expresiones numéricas y algebraicas. * Resolución de ecuaciones: polinómicas, exponenciales, logarítmicas, trigonométricas y sistemas de ecuaciones. * Formulación trigonométrica. * Cálculo de límites y continuidad de funciones. * Derivación de funciones. * Representación gráfica de funciones. Aunque los temas precedentes se hayan estudiado en bachillerato, se irán resumiendo y mencionando al principio de cada tema en el que sea imprescindible su uso, pero sin entrar en detalles, de manera que es conveniente que el alumno halla cursado con el aprovechamiento debido los cursos de bachillerato.
Competencias
Competencias transversales/genéricas
1. Capacidad de análisis y síntesis. 2. Capacidad de organización y planificación. 3. Comunicación y comprensión oral y escrita. 4. Conocimientos de informática. 5. Resolución de problemas. 6. Razonamiento crítico. 7. Aprendizaje autónomo. 8. Toma de decisiones. 9. Trabajo en equipo. 10. Capacidad de aplicar los conocimientos en la práctica.
Competencias específicas
Cognitivas(Saber):
1. Matemáticas. 2. Física. 3. Conocimientos básicos de Informática. 4. Conocimientos básicos de inglés.
Procedimentales/Instrumentales(Saber hacer):
1. Búsqueda y gestión de la información y documentación. 2. Planificación, organización y estrategia. 3. Estimación y programación del trabajo.
Actitudinales:
1. Mostrar actitud crítica y responsable. 2. Valorar el aprendizaje autónomo. 3. Mostrar interés en la ampliación de conocimientos y búsqueda de información. 4. Respetar las decisiones y opiniones ajenas. 5. Compromiso ético. 6. Preocupación por la calidad. 7. Motivación de logro.
Objetivos
1. Dotar al futuro Ingeniero Técnico de las nociones fundamentales de Análisis Infinitesimal desde un punto de vista muy práctico. 2. Utilizar con soltura las herramientas matemáticas más necesarias en otras asignaturas y en su futuro profesional.
Programa
REPASO DE FUNCIONES DE UNA VARIABLE Tema 1: Derivación Concepto de derivada. Interpretación geométrica. Propiedades. Teoremas del valor medio. Regla de L´Höpital. Derivación implícita. Tema 2: Integración Concepto de función primitiva. Propiedades. Métodos de integración: integrales inmediatas, método de descomposición, integración por partes, integrales racionales, cambios de variables. Integral de Riemann. Propiedades. Teoremas fundamentales: teorema del valor medio y regla de Barrow. Aplicaciones de la integral. Regla de Simpson. Integrales impropias. Concepto. SERIES Y FUNCIONES DE VARIAS VARIABLES Tema 3: Sucesiones y Series Sucesiones numéricas. Convergencia. Propiedades. Indeterminaciones. Series numéricas. Convergencia. Criterios de convergencia de series de términos positivos: de comparación, de comparación por paso al límite, del cociente, de la raíz y de Raabe. Series alternadas. Criterio de Leibniz. Convergencia absoluta y condicional. Teorema de Taylor. Aproximación de funciones. Series de potencias. Serie de Taylor. Tema 4: Funciones de varias variables Concepto. Superficies. Límites: límites dobles y límites por caminos o direccionales. Propiedades. Criterio de las trayectorias. Criterio por cambio a polares. Continuidad. Propiedades. Derivadas parciales. Derivadas parciales sucesivas. Diferenciabilidad. Regla de la cadena. Derivación implícita. Derivadas direccionales. Plano tangente y recta normal a una superficie. Extremos relativos. Multiplicadores de Lagrange. Tema 5: Integrales múltiples Integrales iteradas. Integrales dobles. Cálculo de volúmenes y áreas planas. Cambio de variables. Coordenadas polares. Integrales triples. Tema 6: Análisis vectorial Campos vectoriales. Integrales de línea. Campos vectoriales conservativos e independencia del camino. Teorema de Green. Integrales de superficie. Divergencia. Teorema de la divergencia. Rotacional. Teorema de Stokes.
Técnicas Docentes
|
||||||
Otros (especificar):
Uso del campus virtual para disponer de toda la información relativa a la asignatura: contenidos, pruebas de evaluación, tutorías electrónicas, foros, realización iteractiva de ejercicios autoevaluables (fundamentalmente de tipo test). Uso de ordenadores para comprensión de conceptos y para cálculo de las operaciones más importantes del análisis, límites, derivadas, integrales etc. |
Criterios y Sistemas de Evaluación
La evaluación consistirá en un examen formado por ejercicios teórico- prácticos.
Recursos Bibliográficos
BIBLIOGRAFÍA BÁSICA 1. Apuntes de Cálculo para ingenieros técnicos. M. T. González Montesinos. Disponibles a través del campus virtual de la asignatura y en copistería. 2. CÁLCULO (Volúmenes I y II ). Larson / Hostetler / Edwards . Mc Graw- Hill BIBLIOGRAFÍA COMPLEMENTARIA 1. CÁLCULO I . Teoría y Problemas de Análisis Matemático. Alfonsa García López et alias. Editorial ICAI. 2. Ejercicios y Problemas de Cálculo. Tomos I y II. F. Granero. Editorial Tebar Flores. 3. Ejercicios de Análisis. Cálculo Diferencial e Integral. Braulio de Diego. Editorial Deimos. 4. Cálculo Infinitesimal I. Tomos 1 y 2. Fernando García Castro y Andrés Gutiérrez Gómez. Ediciones Pirámide S.A.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.