Fichas de asignaturas 2013-14
![]() |
GEOMETRÍA RIEMANNIANA |
![]() ![]() |
|
Asignatura |
![]() |
| |
Profesorado |
![]() |
| |
Situación |
![]() |
| |
Competencias |
![]() |
| |
Objetivos |
![]() |
| |
Programa |
![]() |
| |
Actividades |
![]() |
| |
Metodología |
![]() |
| |
Distribucion |
![]() |
| |
Técnicas Docentes |
![]() |
| |
Evaluación |
![]() |
| |
Recursos Bibliográficos |
![]() |
Código | Nombre | |||
Asignatura | 207042 | GEOMETRÍA RIEMANNIANA | Créditos Teóricos | 4 |
Descriptor | Créditos Prácticos | 2 | ||
Titulación | 0207 | LICENCIATURA EN MATEMÁTICAS | Tipo | Optativa |
Departamento | C101 | MATEMATICAS | ||
Curso | ||||
Créditos ECTS | 6 |
ASIGNATURA OFERTADA SIN DOCENCIA
Profesorado
José Javier Güemes Alzaga
Objetivos
Desarrollo de las propiedades métricas y geométricas de las variedades o sistemas con varios grados de libertad. Aplicaciones dinámicas, mecánicas y físicas. Comprensión del espacio-tiempo de la relatividad general.
Programa
Conexiones y Paralelismo. Geodésicas. Curvatura. Variedades Completas. Inmersiones Isométricas. Espacios de Curvatura Constante. Aplicación a la Relatividad General.
Criterios y Sistemas de Evaluación
Examen de la asignatura. Consiste en una prueba escrita con una duración de hasta 4 horas y en la que el alumno deberá responder a problemas o ejercicios de tipo práctico en la que se evaluará la capacidad del alumno para afrontar tanto situaciones ya conocidas (problemas propuestos en clase) como situaciones nuevas. La superación de la asignatura deberá implicar: Haber asimilado los conceptos fundamentales de los contenidos de la asignatura y conocer los resultados fundamentales acerca de las relaciones entre los conceptos matemáticos introducidos. Estar capacitado para reconocer, plantear, formular y resolver situaciones y problemas prácticos de carácter científico, tecnológico o de otros ámbitos, que puedan adecuarse al tratamiento de la geometría riemanniana.
Recursos Bibliográficos
Boothby, W.M. "An introduction to differentiable manifolds and riemannian geometry". Second Edition. Pure and Applied Mathematics, 120. Academic Press, Inc. 1986. Do Carmo, M.P. "Riemannian Geometry". Mathematics: Theory & Applications. Birkhäuser Boston Inc, 1992. Dodson, C.T.J. & Poston, T. "Tensor Geometry". Pitman, London, 1977. O'Neill, B. "Semi-riemannian geometry". Academic Press, New York, 1983.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente. En aplicación de la Ley 3/2007, de 22 de marzo, para la igualdad efectiva de mujeres y hombres, así como la Ley 12/2007, de 26 de noviembre, para la promoción de la igualdad de género en Andalucía, toda alusión a personas o colectivos incluida en este documento estará haciendo referencia al género gramatical neutro, incluyendo por lo tanto la posibilidad de referirse tanto a mujeres como a hombres.