Fichas de asignaturas 2012-13
![]() |
AMPLIACIÓN DE MATEMÁTICAS |
|
Código | Nombre | |||
Asignatura | 41415003 | AMPLIACIÓN DE MATEMÁTICAS | Créditos Teóricos | 3.75 |
Título | 41415 | GRADO EN INGENIERÍA RADIOELECTRÓNICA | Créditos Prácticos | 3.75 |
Curso | 2 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Estar matriculado en la asignatura.
Recomendaciones
Haber aprobado las asignaturas de matemáticas del curso primero.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
Jesús | Torrens | Echeverria | Profesor Numerario EON | S |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B1 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización | GENERAL |
B3 | Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos con aplicación en ingeniería | GENERAL |
E1 | Conocimientos en materias fundamentales y tecnológicas, que le capaciten para el aprendizaje de nuevos métodos y teorías, así como que le doten de una gran versatilidad para adaptarse a nuevas situaciones | ESPECÍFICA |
E2 | Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos habilidades y destrezas | ESPECÍFICA |
Resultados Aprendizaje
Identificador | Resultado |
R3 | Conseguir aprender varios métodos numéricos del Cálculo y del Algebra. |
R1 | Llegar a dominar la resolución de triángulos esféricos. |
R2 | Llegar a saber resolver las ecuaciones diferenciales lineales sobre todo con la transformada de Laplace. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: clases teóricas. MÉTODO EXPOSITIVO: lección magistral. El profesor expone los contenidos básicos de los temas, se resuelven ejercicios que refuercen los conocimientos teóricos y se proponen ejercicios y problemas para ser resueltos por el alumno. |
30 | B1 E1 E2 | |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: clases prácticas. MÉTODO de ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. Los alumnos podrán trabajar individualmente o en grupitos. |
15 | B1 E1 E2 | |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de informática. MÉTODO de ENSEÑANZA-APRENDIZAJE: En estas sesiones se resuelven los ejercicios y problemas de las prácticas anteriores. |
15 | B1 B3 E2 | |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual. MÉTODO de ENSEÑANZA-APRENDIZAJE: son sesiones de trabajo del alumno para comprender los contenidos impartidos en las clases teóricas, en las clases de problemas y en las prácticas de ordenador. El alumnno tendrá que hacer eventualmente consultas bibliográficas. |
60 | B1 E1 E2 | |
11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y seminarios. Sesiones dedicadas a orientar al alumno sobre cómo abordar la resolución de ejercicios y problemas relativos al desarrollo de la asignatura. |
20 | B1 E1 E2 | |
12. Actividades de evaluación | Sesiones donde se realizan las diferentes pruebas de progreso periódico del alumno. |
10 | B1 E1 E2 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Se da una semana para el trabajo personalizado y lo corrige el profesor. |
|
||
Se da de plazo una semana para entregar el trabajo personalizado. |
|
||
Se da de plazo una semana para entregar el trabajo personalizado. |
|
||
Prueba final. | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura. |
|
B1 E1 E2 |
Prueba informática. | Trabajo de realización de las pruebas de informática. |
|
B1 B3 E2 |
Pruebas de progreso. | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura. |
|
B1 E1 E2 |
Trabajos fuera de clase en los que se plantean problemas personalizados más complejos y se resuelven con el programa maxima del ordenador y luego también a mano. Sólo para los alumnos que aprueben el primer parcial. | El trabajo dura una semana. |
|
Procedimiento de calificación
Se evaluarán las pruebas de progreso, usualmente escritas, realizadas a lo largo del curso, con un 80% de la calificación global de la asignatura. Las pruebas de conocimientos básicos supondrán un 10% de la nota global y el trabajo de realización de las prácticas de informática el restante 10%. El alumno que no supere alguna de las pruebas de progreso anteriores, deberá realizar un examen final.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
TEMA 1. TRIGONOMETRÍA ESFÉRICA. Circunferencias máximas. Polos. Angulo esférico. Triángulo esférico. Propiedades de los lados y ángulos de un triángulo esférico. Coordenadas esféricas: latitud y longitud. Paso de coordenadas cartesianas a esféricas. Fórmulas de Bessel del coseno del lado y del seno. Triángulo esférico polar: relaciones entre los elementos de un triángulo y los de su polar. Fórmulas del coseno del ángulo. Analogías de Neper. Resolución de triángulos esféricos: 6 casos. Triángulos esféricos rectángulos. Pentágono de Neper. |
B1 E1 E2 | R1 |
TEMA 2. ECUACIONES DIFERENCIALES. Ecuaciones deferenciales de primer orden (de variables separables, lineales y de Bernouilli), método de variación de constantes de Lagrange. Transformada de Laplace: propiedades, tabla de transformadas. Ecuaciones diferenciales de orden superior, lineales y con coeficientes constantes. Ecuaciones en derivadas parciales. |
B1 E1 E2 | R2 |
TEMA 3. MÉTODOS NUMÉRICOS. Método de Newton de resolución de ecuaciones. Polinomio de interpolación. Integración numérica: método de los trapecios, Simpson y Romberg. Resolución numérica de ecuaciones diferenciales. Métodos numéricos del álgebra matricial. |
B1 E1 E2 | R3 |
Bibliografía
Bibliografía Básica
Mª Asunción Iglesias Martín. Trigonometría esférica. Teoría y problemas resueltos. UPV. Bilbao 2004. Juan Manuel Nieto Vales. Curso de Trigonometría Esférica. UCA 1996. Manuel Berrocoso [et al.]. Notas y apuntes de trigonometría esférica y astronomía de posición. UCA 2003. William E. Boyce, Richard C. DiPrima. Ecuaciones diferenciales y problemas con valores en la frontera. México. Limusa Wiley, 2010. Robert D. Strum, John R. Ward. Transformada de Laplace; solución de ecuaciones diferenciales. México. F. Trillas 1970. Richard L. Burden. Análisis Numérico. México. International Thomson,2002. Claude Brézinski. Introduction à la pratique du calcul numérique. Dunod. Paris, 1988.
![]() |
CÁLCULO |
|
Código | Nombre | |||
Asignatura | 41415001 | CÁLCULO | Créditos Teóricos | 3.75 |
Título | 41415 | GRADO EN INGENIERÍA RADIOELECTRÓNICA | Créditos Prácticos | 3.75 |
Curso | 1 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Recomendaciones
Tener los conocimientos impartidos en la asignatura Matemáticas II de bachillerato. También se recomienda tener un hábito de estudio continuado sobre la asignatura.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
Mª AURORA | FERNANDEZ | VALLES | PROFESOR AYUDANTE DOCTOR | S |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B1 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización | GENERAL |
E1 | Conocimientos en materias fundamentales y tecnológicas, que le capaciten para el aprendizaje de nuevos métodos y teorías, así como que le doten de una gran versatilidad para adaptarse a nuevas situaciones | ESPECÍFICA |
E2 | Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos habilidades y destrezas | ESPECÍFICA |
Resultados Aprendizaje
Identificador | Resultado |
R1 | Analizar la convergencia o divergencia de series numéricas y conocer las series de potencias |
R2 | Conocer la continuidad y derivabilidad de funciones de varias variables y su optimización |
R3 | Conocer y aplicar los métodos numéricos del cálculo |
R4 | Dominar el cálculo integral de funciones de 2 y 3 variables. Conocer sus aplicaciones |
R5 | Manejar con fluidez los conceptos de continuidad, derivabilidad y cálculo integral para funciones de una variable. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: Clases teóricas MÉTODO DE ENSEÑANZA APRENDIZAJE: Método expositivo. Lección magistral En estas clases el profesor presenta los contenidos básicos correspondientes a las unidades temáticas seleccionadas. Asimismo, se resuelven ejercicios que ayuden a afianzar los conocimientos teóricos y se proponen ejercicios y problemas para ser resueltos por los alumnos. |
30 | Grande | E1 |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases prácticas MÉTODOS DE ENSEÑANZA- APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. En estas clases se desarrollan actividades de aplicación de los conocimientos adquiridos a problemas concretos que permitan ampliar y profundizar en dichos conocimientos. Los alumnos podrán trabajar individualmente o en grupos pequeños. |
15 | Mediano | B1 E2 |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de Informática MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas En estas clases los estudiantes resolverán un conjunto de problemas utilizando las aplicaciones informáticas de un programa de cálculo simbólico y analizarán los resultados obtenidos |
15 | Reducido | B1 E2 |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual/autónomo MÉTODOS DE ENSEÑANZA- APRENDIZAJE: Contrato de aprendizaje Estas sesiones contemplan el trabajo realizado por el alumno para comprender los contenidos impartidos en clases teóricas, en clases de problemas y en prácticas con ordenador.Asimismo, se contempla la búsqueda bibliográfica necesaria para el mejor estudio. |
79 | Reducido | B1 E1 E2 |
11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y seminarios Sesiones dedicadas a orientar al alumno sobre cómo abordar la resolución de ejercicios y problemas relativos al desarrollo de la asignatura |
5 | Reducido | B1 E1 E2 |
12. Actividades de evaluación | ACTIVIDADES DE EVALUACIÓN Sesiones donde se realizan las diferentes pruebas de progreso periódico |
6 | Grande | B1 E1 E2 |
Evaluación
Criterios Generales de Evaluación
La calificación global de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación, siempre que se alcance una nota mínima de 4 en cada una de las pruebas de progreso, y en la prueba final (para aquellos alumnos que tengan que hacerla). En caso contrario la calificación global será inferior a 5. Superarán la asignatura aquellos alumnos cuya calificación global sea igual o superior a 5.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Pruebas de conocimientos básicos | Prueba objetiva de elección múltiple/Análisis documental |
|
B1 E1 E2 |
Realización de pruebas de progreso | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura |
|
B1 E1 E2 |
Realización de una prueba final | Prueba escrita compuesta por ejercicios teórico-prácticos y problemas sobre los contenidos de la asignatura. |
|
B1 E1 E2 |
Trabajo de realización de las pruebas de informática | Análisis documental/Rúbrica de valoración de documentos |
|
B1 E2 |
Procedimiento de calificación
Se evaluará: La realización de diversas trabajos de prácticas de informática que se propondrán en el aula. Los trabajo de realización de las prácticas de informática tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado, y supondrá un 10% de la calificación global de la asignatura. La realización de pruebas de progreso que se harán a lo largo del curso. En las pruebas de progreso se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. Estas pruebas serán usualmente escritas. Supondrán un 80% de la calificación global de la asignatura. El alumno que no supere una, o más de una, de las pruebas de progreso anteriores, deberá realizar un examen final que se valorará de la misma forma que las pruebas de progreso (suponiendo un 80% de la calificación final), siendo la Junta de Escuela quien establezca la fecha y el lugar de realización. Cualquier error de concepto en los exámenes supondrá la calificación de cero puntos en el mismo. Y la participación activa del alumno mediante la entrega de tareas o pruebas de conocimientos básicos. Dichas tareas suponen un 10% de la calificación global de la asignatura.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
TEMA 0.- FUNCIONES DE UNA VARIABLE Lección 1.- Cálculo diferencial de funciones de una variable Números reales y complejos.- Definición de función.- Concepto de continuidad y límite.- Cálculo de límites.- Concepto de derivada.- Interpretación de la derivada.- Cálculo de derivadas.- Teoremas del valor medio.- Regla de LHôpital.- Derivación implícita. Lección 2.- Cálculo integral de funciones de una variable Función primitiva.- Cálculo de primitivas.- Problema del área de una región plana.- Integral de Riemann.- Propiedades de la integral de Riemann.- Teorema del valor medio.- Teorema fundamental del Cálculo y regla de Barrow.- Aplicaciones de la integral.- Integrales impropias. |
B1 E1 E2 | R5 |
TEMA 1.- SUCESIONES Y SERIES Sucesiones reales.- Límite de una sucesión.- Conceptos de convergencia y divergencia.- Series reales: de términos positivos, alternadas y de términos cualesquiera .- Conceptos de convergencia y divergencia.- Series geométricas y armónica simple.- Criterios de convergencia.- Series de potencias.- Teorema de Taylor.- Series de McLaurin y Taylor. |
B1 E1 E2 | R1 |
TEMA 2.- MÉTODOS NUMÉRICOS Resolución numérica de ecuaciones.- Interpolación polinómica.- Aproximación de funciones.- Diferenciación e integración numérica. |
B1 E1 E2 | R3 |
TEMA 3.- CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES Introducción a funciones de varias variables.- Superficies en el espacio.- Continuidad y límites.- Derivadas parciales.- Diferenciabilidad.- Regla de la cadena.- Derivadas direccionales.- Derivación implícita.- Optimización de funciones de varias variables.- Multiplicadores de Lagrange. |
B1 E1 E2 | R2 |
TEMA 4.- CÁLCULO INTEGRAL DE FUNCIONES DE VARIAS VARIABLES Integrales iteradas.- Integrales dobles y triples.- Aplicaciones.- Cambio de variables: coordenadas polares, cilíndricas y esféricas. |
B1 E1 E2 | R4 |
Bibliografía
Bibliografía Básica
A. García, F. García, A. Gutiérrez, A. López, G. Rodríguez, A. de la Villa. Cálculo I. Ed. Clagsa, 1998. F. Martínez de la Rosa, C. Vinuesa Sánchez. Matemáticas. Servicio de Publicaciones de la Universidad de Cádiz, 2003. R.L. Burden, J. D. Faires. Análisis Numérico. International Thomson Editores, S.A., 2002. Martínez, F. y Garrido, M.J. ``Matemáticas II". Servicio de Publicaciones. U.C.A. 1998. A. García, A. López, G. Rodríguez, S. Romero, A. de la Villa. Cálculo II. Teoría y problemas de funciones de varias variables", Clagsa, 1996. R. Larson, R. Hostetler, B. Edwards. Cálculo. Volúmenes I y II. Ed. McGraw-Hill. V. Tomeo, I. Uña, J. San Martín. Problemas resueltos de Cálculo en una variable. Ed. Thomson Paraninfo, 2005. Braulio de Diego. Ejercicios de Análisis. Cálculo Diferencial e Integral. Ed. Deimos. Ayres-Mendelson. Cálculo diferencial e integral. Ed. McGraw-Hill. F. Granero. Ejercicios y problemas de Cálculo, Tomos I y II. Ed. Tebar Flores. A. J. Arriaza Gómez, J. M. Calero Posada, L. Del Águila Garrido, A. Fernández Valles, F. Rambla Barreno, M. V. Redondo Neble, J. R. Rodríguez Galván. Prácticas de Matemáticas con Maxima. Matemáticas usando Software Libre.
Bibliografía Ampliación
B. Demidovich. Problemas y ejercicios de análisis matemático. Ed. Mir o Ed. Paraninfo. Anti-Demidovich (1, 2, 3 y 4). Matematnka. D. Kincaid, W. Cheney. Análisis Numérico. Addison-Wesley Iberoamericana, Wilmington 1994. F. Guillén González, A. Doubova Krasotchenko. Un Curso de Cálculo Numérico: Interpolación, Aproximación, Integración y Resolución de Problemas Diferenciales. Sevilla, España. Servicio de Publicaciones Universidad de Sevilla. 2007. J. A. Sánchez Viña. E. Sánchez Mañes. Ejercicios y complementos de Análisis Matemático I. Tecnos.
![]() |
ÁLGEBRA Y GEOMETRIA |
|
Código | Nombre | |||
Asignatura | 41415002 | ÁLGEBRA Y GEOMETRIA | Créditos Teóricos | 5 |
Título | 41415 | GRADO EN INGENIERÍA RADIOELECTRÓNICA | Créditos Prácticos | 2.5 |
Curso | 1 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
ninguno.
Recomendaciones
Haber cursado el bachillerato cientifico tecnologico.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
MARIA | ROSA | DURAN | PROFESOR SUSTITUTO INTERINO | S |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B1 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización | GENERAL |
B3 | Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos con aplicación en ingeniería | GENERAL |
E1 | Conocimientos en materias fundamentales y tecnológicas, que le capaciten para el aprendizaje de nuevos métodos y teorías, así como que le doten de una gran versatilidad para adaptarse a nuevas situaciones | ESPECÍFICA |
E2 | Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos habilidades y destrezas | ESPECÍFICA |
Resultados Aprendizaje
Identificador | Resultado |
R2 | Dominar los conceptos básicos de los espacios vectoriales y de los espacios vectoriales euclídeos de dimensión finita. |
R1 | Haber aprendido a operar con matrices, determinantes y sistemas lineales principalmente mediante operaciones elementales. |
R5 | Llegar a aprender los conceptos básicos de la geometría diferencial de curvas alabeadas. Llegar a conocer las superficies cuádricas. |
R3 | Llegar a saber calcular los valores y vectores propios de una matriz cuadrada y llegar a encontrarle su forma canónica de Jordan. |
R4 | saber reducir la ecuación de una cónica o de una cuádrica. Llegar a dibujar la cónica y a clasificar la cuádrica. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: clases teóricas. MÉTODO EXPOSITIVO: lección magistral. El profesor presenta los contenidos básicos de los temas, se resuelven ejercicios que refuercen los conocimientos teóricos y se prponen ejercicios y problemas para ser resueltos por el alumno. |
40 | Grande | E1 |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: clases prácticas. MÉTODO de ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. Los alumnos trabajarán individualmente o en grupitos. |
10 | Mediano | B1 E2 |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: prácticas de informática. MÉTODO de ENSEÑANZA-APRENDIZAJE: en estas sesiones se resuelven los ejercicios y problemas de las prácticas anteriores y otros similares con mayor dimensión y volumen de cuentas. |
10 | Reducido | B1 B3 |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: estudio y trabajo individual. MÉTODO de ENSEÑANZA-APRENDIZAJE: sesiones de trabajo del alumno para comprender los contenidos impartidos en las clases teóricas, en clases de problemas y en las prácticas de ordenador. El alumno tendrá que hacer eventualmente consultas bibliográficas. |
78 | Reducido | B1 E1 E2 |
11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y seminarios. Sesiones dedicadas a orientar al alumno sobre cómo abordar la resolución de ejercicios y problemas relativos al desarrollo de la asignatura. |
6 | Reducido | B1 E1 E2 |
12. Actividades de evaluación | Sesiones donde se realizan las diferentes pruebas de progreso periódico del alumno. |
6 | Grande | B1 E1 E2 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Prueba de informática. | Trabajo de realización de las pruebas de informática. |
|
B1 E1 E2 |
Prueba final. | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura. |
|
B1 E1 E2 |
Pruebas de progreso. | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura. |
|
B1 E1 E2 |
Procedimiento de calificación
Se evaluará, hasta un máximo de 1 punto, la realización de diversas actividades que se propondrán en el aula junto con los controles no eliminatorios que se realizarán a lo largo del curso. En las prácticas de la asignatura se realizarán actividades utilizando un programa de cálculo simbólico. Estas actividades se evaluarán con un máximo de 1 punto. Se hará una prueba escrita en la convocatoria de Junio y Septiembre que se puntuará con un máximo de 8 puntos. Se considerará que han adquirido las competencias de la asignatura aquellos alumnos que obtengan 5 ó más puntos entre todas las actividades evaluadas. Para las convocatorias extraordinarias de Junio y Septiembre, se mantendrán las notas obtenidas tanto en las actividades como en prácticas. No se conservará ninguna calificación para el siguiente curso académico.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
BLOQUE 1.- MATRICES, DETERMINANTES Y SISTEMAS Tema 1.- Matrices y Determinantes Definición de matriz.- Operaciones lineales con matrices.- Producto de matrices.- Matriz traspuesta. Propiedades.- Tipos de matrices.- Matriz inversa. Unicidad y propiedades.- Operaciones elementales. Matrices elementales.- Matrices equivalentes.- Forma canónica de Hermite.- Método de Gauss-Jordan para el cálculo de la inversa de una matriz.- Rango de una matriz.- Cálculo del rango mediante operaciones elementales.- Definición y propiedades del determinante de una matriz cuadrada.- Aplicación de los determinantes. Tema 2.- Sistemas de Ecuaciones Lineales y no Lineales Terminología y notaciones.- Sistemas equivalentes.- Método de eliminación de Gauss.- Teorema de Rouché-Fröbenius.- Sistemas homogéneos: Espacio nulo de una matriz.- Resolución de sistemas: métodos e iterativos. |
B1 E1 E2 | R1 |
BLOQUE 2.- ESPACIO VECTORIAL Y EUCLIDEO Tema 3.- Espacio Vectorial R n Definición y propiedades.- Dependencia e independencia lineal. Propiedades.- Base y dimensión del espacio vectorial Rn.- Coordenadas de un vector.- Cambio de base en Rn.- Subespacios vectoriales. Caracterización.- Ecuaciones de un subespacio.- Base y dimensión de un subespacio. Tema 4.- Espacio Vectorial Euclídeo R n Producto escalar.- Módulo de un vector y ángulo entre vectores.- Bases ortogonales y ortonormales.- Método de ortonormalización de Gram-Schmidt. |
B1 E1 E2 | R2 |
BLOQUE 3.- DIAGONALIZACIÓN DE MATRICES. Tema 5.- Diagonalización de Matrices Autovalores y autovectores de una matriz cuadrada.- Propiedades.- Matriz diagonalizable: Diagonalización.- Diagonalización de matrices simétricas por semejanza ortogonal. Potencias de una matriz diagonalizable.- Forma Canónica de Jordan para matrices de orden dos y tres. |
B1 E1 E2 | R3 |
BLOQUE 4.- CÓNICAS Y CUÁDRICAS Tema 6.- Cónicas Definición de cónica. Ecuación matricial.- Ecuación reducida de una cónica.- Clasificación y elementos principales de las cónicas.-Estudio de las cónicas ordinarias. Tema 7.- Cuádricas Definición de cuádrica. Ecuación matricial.- Ecuación reducida de una cuádrica.- Clasificación de las cuádricas.- Estudio de las cuádricas ordinarias. |
B1 E1 E2 | R4 |
BLOQUE 5.- CURVAS Y SUPERFICIES Tema 8.- Curvas Planas Concepto de curva plana.- Expresiones de una curva: paramétrica, explícita e implícita.- Tangente y normal en un punto de una curva.- Puntos singulares y puntos ordinarios.- Curvas planas en coordenadas polares. Tema 9.- Curvas Alabeadas Definición de curva en el espacio.- Ecuaciones de una curva.- Punto ordinario y punto singular.- Longitud de un arco de curva.- Triedro y Fórmulas de Frenet.- Recta tangente, normal y Binormal.- Curvatura y torsión.- Planos osculador, normal y rectificante. Tema 10.- Superficies Concepto de superficie.- Plano tangente y recta normal a una superficie.- Superficies de revolución y de traslación.- Superficies cónicas y cilíndricas. |
B1 E1 E2 | R5 |
Bibliografía
Bibliografía Básica
Howard Anton. Elementos de Algebra Lineal. Limusa, México 1998.
De la Villa, A. Problemas de Álgebra con esquemas teóricos. Clagsa, Madrid 1998.
Merino, L. y Santos, E. Álgebra Lineal con métodos elementales. Thomson Paraninfo, Madrid 2006.
De Burgos, J. Álgebra Lineal y Geometría Cartesiana. McGraw-Hill, Madrid 2006.
Grossman, S. Álgebra lineal con aplicaciones. McGraw-Hill. Mexico 2007.
López, A. y De la Villa, A. Geometría Diferencial. Clagsa, Madrid 1997.
Costa, A.; Gamboa, M. y Porto, A. Notas de Geometría Diferencial de Curvas y Superficies. Sanz y Torres, Madrid 2007.
Ariza, O.; Camacho, J.C. y Sánchez, A. (2000): Álgebra lineal y Geometría en Escuelas Técnica. Ed. Los Autores.
De Burgos, J. Curso de Álgebra y Geometría. Alhambra Longman, Madrid 1994.
De Diego, B.; Gordillo, E. y Valeiras, G. Problemas de Álgebra Lineal. Ed. Deimos. 1986.
Rubio, R.; Ríder, A. y Raya, C. Álgebra y Geometría lineal. Reverte, Madrid 2007.
Costa, A., Gamboa, M., Porto, A. Ejercicios de Geometría Diferencial de Curvas y Superficies. Sanz y Torres, Madrid 2005.
Bibliografía Ampliación
Rojo, J. y Martín, I. Ejercicios y Problemas de Álgebra Lineal. McGraw-Hill, Madrid 1994.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente.