Fichas de asignaturas 2012-13
![]() |
AMPLIACIÓN DE MATEMÁTICAS |
|
Código | Nombre | |||
Asignatura | 10619004 | AMPLIACIÓN DE MATEMÁTICAS | Créditos Teóricos | 4 |
Título | 10619 | GRADO EN INGENIERÍA ELÉCTRICA - ALGECIRAS | Créditos Prácticos | 3.5 |
Curso | 2 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Ninguno
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
José Carlos | Camacho | Moreno | Profesor Titular de Universidad | S |
ISMAEL | GONZÁLEZ | YERO | CONTRATADO DOCTOR | N |
Mª JOSE | MARIN | PECCI | PROFESOR ASOCIADO | N |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; Estadística y optimización. | ESPECÍFICA |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | BÁSICA |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | BÁSICA |
CG03 | Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones | GENERAL |
CG04 | Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial. | GENERAL |
CT01 | Comunicación oral y/o escrita | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
RA | Aptitud para aplicar los conocimientos sobre: análisis vectorial; ecuaciones diferenciales y en derivadas parciales y métodos numéricos. |
RR | Ser capaz de resolver los problemas matemáticos que puedan plantearse en la ingeniería |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | Clases de teoría, ejercicios y problemas, principalmente resueltos por el profesor pero con trabajo previo por parte del alumnado, que sirvan para aclarar los conceptos teóricos analizados. Se dispondrá del campus virtual de la Universidad de Cádiz como soporte tecnológico de estas actividades. La metodología de enseñanza-aprendizaje hará uso de estas actividades, empleando como referente los modelos de innovación docente propuestos para las universidades andaluzas. Se potenciarán principalmente las metodologías activas, buscando en todo momento la implicación por parte del alumno en el proceso de aprendizaje. |
32 | B01 CB2 CB3 CG03 CG04 | |
02. Prácticas, seminarios y problemas | Sesiones de trabajo para la resolución de problemas prácticos, principalmente resueltos por el alumnado, con el profesor actuando como guía-apoyo. Se fomentará el trabajo cooperativo y la exposición pública de resultados. Se dispondrá del campus virtual de la Universidad de Cádiz como soporte tecnológico de estas actividades. La metodología de enseñanza-aprendizaje hará uso de estas actividades, empleando como referente los modelos de innovación docente propuestos para las universidades andaluzas. Se potenciarán principalmente las metodologías activas, buscando en todo momento la implicación por parte del alumno en el proceso de aprendizaje. |
14 | B01 CB2 CB3 CG03 CG04 | |
03. Prácticas de informática | Sesiones de trabajo dirigidas a crear en el alumnado la capacidad de resolución de problemas mediante el uso de herramientas informáticas. Se combinarán exposiciones de conceptos y procedimientos por parte del profesor con actividades de resolución de problemas por parte del alumnado, de manera individual o en grupo. Se dispondrá del campus virtual de la Universidad de Cádiz como soporte tecnológico de estas actividades. La metodología de enseñanza-aprendizaje hará uso de estas actividades, empleando como referente los modelos de innovación docente propuestos para las universidades andaluzas. Se potenciarán principalmente las metodologías activas, buscando en todo momento la implicación por parte del alumno en el proceso de aprendizaje. |
14 | B01 CB2 CB3 CG03 CG04 CT01 | |
10. Actividades formativas no presenciales | Tutorias a través del campus virtual (15) Estudio autónomo del alumno (30 |
45 | B01 CB2 CB3 CG03 CG04 CT01 | |
11. Actividades formativas de tutorías | Tutorías individuales |
30 | B01 CB2 CB3 CG03 CG04 CT01 | |
12. Actividades de evaluación | Evaluación y su preparación |
15 | B01 CB2 CB3 CG03 CG04 CT01 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Prueba Final | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos |
|
B01 CB2 CB3 CG03 CG04 CT01 |
Realización de Pruebas de Progreso | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura |
|
B01 CB2 CB3 CG03 CG04 CT01 |
Trabajo de realización de las Prácticas de Informática | Análisis documental/ Rúbrica de valoración de documentos |
|
B01 CB2 CB3 CG03 CG04 CT01 |
Procedimiento de calificación
Se evaluará tanto la realización de diversas actividades que se propondrán en el aula, las pruebas de progreso que se realizarán a lo largo del curso, y la participación activa del alumno mediante la entrega de tareas. En las pruebas de progreso se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. Estas pruebas serán usualmente escritas. Cada prueba podrá compensar la parte correspondiente en el examen final. El trabajo de realización de las Prácticas de Informática tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado, y supondrá un 12% de la calificación global de la asignatura. El alumno deberá realizar un Examen Final que se valorará de la misma forma que las pruebas de progreso (suponiendo un 88% de la calificación final), siendo la Junta de Escuela quien establezca la fecha y el lugar de realización. En la prueba final se pueden compensar los apartados correspondientes a las pruebas de progreso. Se considerará que han adquirido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
Tema 1 Análisis vectorial Campos vectoriales. Integrales de línea. Campos vectoriales conservativos e independencia del camino. Teorema de Green. Integrales de superficie. Divergencia. Teorema de la divergencia. Rotacional. Teorema de Stokes. |
B01 CB2 CB3 CG03 CG04 CT01 | RA RR |
Tema 2 Ecuaciones diferenciales ordinarias (E.D.O.) Origen, definición y clasificación de las E.D.O. Conceptos fundamentales. Soluciones. Tipos de soluciones. |
B01 CB2 CB3 CG03 CG04 CT01 | RA RR |
Tema 3 E.D.O. de primer orden Teorema de existencia y unicidad de soluciones. Interpretación geométrica de la ecuación. y'=F(x,y)(en prácticas). E.D. con variables separadas y reducibles a ellas. E.D. homogéneas y reducibles a ellas. E.D. exactas. Reducibles a exactas: Factor integrante. E.D. lineales de 1er orden. Definiciones. Resolución. Ecuación de Bernoulli. Trayectorias isogonales y ortogonales. |
B01 CB2 CB3 CG03 CG04 CT01 | RA RR |
Tema 4 E.D.O. lineales de orden dos o superior Definiciones. Teorema de existencia y unicidad. Tratamiento vectorial de las soluciones. E.D.O. lineal homogénea de coeficientes constantes: casos en su resolución. E.D.O. lineal completa: método de los coeficientes indeterminados y método de variación de los parámetros. Cambios de variable. Ecuación de Euler. Reducción de un sistema de ecuaciones lineales a una ecuación de orden superior |
B01 CB2 CB3 CG03 CG04 CT01 | RA RR |
Tema 5 Resolución de ecuaciones diferenciales Mediante series de potencias Aplicación de las series de potencias a la resolución de ecuaciones |
B01 CB2 CB3 CG03 CG04 CT01 | RA RR |
Tema 6 Transformada de Laplace Introducción. Definición. Cálculo de transformados de funciones elementales. Propiedades. Producto de Convolución. Transformada inversa. Propiedades. Aplicación a la resolución de ecuaciones diferenciales e integrales y sistemas de ecuaciones lineales. |
B01 CB2 CB3 CG03 CG04 CT01 | RA RR |
Tema 7 Introducción a las Ecuaciones en Derivadas Parciales |
B01 CB2 CB3 CG03 CG04 CT01 | RA RR |
Bibliografía
Bibliografía Básica
- LARSON-HOSTETLER, Cálculo, Ed. McGraw-Hill.- SPIEDGEL, M.S., Variable Compleja. Serie Shaum. México. Ed. McGraw-Hill,1971- KISELOV, A.; KRASNOV, M.; MAKARENKO, G., Problemas de ecuaciones diferenciales ordinarias, Moscú, Ed. Mir 1984- MARCELLÁN, F.; CASASÚS, L.; ZARZO, A., Ecuaciones diferenciales. Problemas lineales y aplicaciones, Madrid, Ed. McGraw-Hill,1990- GEORGE F. SIMMONS, Ecuaciones Diferenciales, con aplicaciones y notas históricas. Madrid. Ed. McGraw-Hill,1998- GLIN JAMES, Matemáticas avanzadas para Ingeniería. México. Ed. Pearson Educación. 2002-JESÚS SAN MARTÍN MORENO, VENANCIO TOMEO PERUCHA, ISAÍAS UÑA JUÁREZ, Métodos Matemáticos. Ampliación de Matemáticas para Ciencias e Ingeniería. Thomson 2005. -VVAA Métodos matemáticos. Ed.Thomson.2005-MANUEL LÓPEZ RODRÍGUEZ. Problemas Resueltos de Ecuaciones Diferenciales. Ed. Thomson.2006-RICHARD BRONSON, GABRIEL COSTA Ecuaciones Diferenciales. Schaum. Ed. Mc Graw Hill. 2008- HENRY RICARDO. Ecuaciones Diferenciales: una introducción moderna. Ed. Reverte. 2008
![]() |
CÁLCULO |
|
Código | Nombre | |||
Asignatura | 10619002 | CÁLCULO | Créditos Teóricos | 4 |
Título | 10619 | GRADO EN INGENIERÍA ELÉCTRICA - ALGECIRAS | Créditos Prácticos | 3.5 |
Curso | 1 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Recomendaciones
Tener los conocimientos impartidos en la asignatura MATEMÁTICAS II de bachillerato. También se recomienda tener un hábito de estudio continuado sobre la asignatura.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
JOSE MARIA | BONELO | SANCHEZ | Profesor Titular Escuela Univ. | N |
ANTONIO LUIS | CASTO | TORRES | Profesor Titular Escuela Univ. | S |
ISMAEL | GONZALEZ | YERO | PROFESOR AYUDANTE DOCTOR | N |
Mª JOSE | MARIN | PECCI | PROFESOR ASOCIADO | N |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; Estadística y optimización. | ESPECÍFICA |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | BÁSICA |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | BÁSICA |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado | BÁSICA |
CG03 | Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones | GENERAL |
CG04 | Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial. | GENERAL |
CT01 | Comunicación oral y/o escrita | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
RA | Aptitud para aplicar los conocimientos sobre: cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos y algorítmica numérica. |
RR | Ser capaz de resolver los problemas matemáticos que puedan plantearse en la ingeniería. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: Clases teóricas MÉTODO DE ENSEÑANZA APRENDIZAJE: Método expositivo. Lección magistral En estas clases el profesor presenta los contenidos básicos correspondientes a las unidades temáticas seleccionadas. Asimismo, se resuelven ejercicios que ayuden a afianzar los conocimientos teóricos y se proponen ejercicios y problemas para ser resueltos por los alumnos. |
32 | Grande | |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases prácticas MÉTODOS DE ENSEÑANZA- APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. En estas clases se desarrollan actividades de aplicación de los conocimientos adquiridos a problemas concretos que permitan ampliar y profundizar en dichos conocimientos. Los alumnos podrán trabajar individualmente o en grupos pequeños. |
14 | Mediano | |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de Informática MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas En estas clases los estudiantes resolverán un conjunto de problemas utilizando las aplicaciones informáticas de un programa de cálculo simbólico y analizarán los resultados obtenidos. |
14 | Reducido | |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual/autónomo MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Contrato de aprendizaje Estas sesiones contemplan el trabajo realizado por el alumno para comprender los contenidos impartidos en clases teóricas, en clases de problemas y en prácticas con ordenador. Asimismo, se contempla la búsqueda bibliográfica necesaria para el mejor estudio. |
79 | ||
11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y seminarios Sesiones dedicadas a orientar al alumno sobre cómo abordar la resolución de ejercicios y problemas relativos al desarrollo de la asignatura. |
5 | ||
12. Actividades de evaluación | ACTIVIDADES DE EVALUACIÓN Sesiones donde se realizan las diferentes pruebas de progreso periódico. |
6 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación.
Procedimiento de calificación
Se evaluará tanto la realización de diversas actividades que se propondrán en el aula, las pruebas de progreso que se realizarán a lo largo del curso, y la participación activa del alumno mediante la entrega de tareas. En las pruebas de progreso se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. Estas pruebas serán usualmente escritas. Supondrán un 80% de la calificación global de la asignatura. Las pruebas de conocimientos básicos supondrán un 10% de la calificación global de la asignatura, y podrán ser propuestas y a realizar en el aula o través del Campus Virtual. El trabajo de realización de las prácticas de informática tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado, y supondrá un 10% de la calificación global de la asignatura. El alumno que no supere una, o más de una, de las pruebas de progreso anteriores, deberá realizar un examen final que se valorará de la misma forma que las pruebas de progreso (suponiendo un 80% de la calificación final), siendo la Junta de Escuela quien establezca la fecha y el lugar de realización. Se considerará que han adquirido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas. Se podrá solicitar al alumno la defensa de algún examen en la sección departamental ante profesores del departamento.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
TEMA 0.- FUNCIONES DE UNA VARIABLE Lección 1.- Cálculo diferencial de funciones de una variable Números reales y complejos.- Definición de función.- Concepto de continuidad y límite.- Cálculo de límites.- Concepto de derivada.- Interpretación de la derivada.- Cálculo de derivadas.- Teoremas del valor medio.- Regla de LHôpital.- Derivación implícita. Lección 2.- Cálculo integral de funciones de una variable Función primitiva.- Cálculo de primitivas.- Problema del área de una región plana.- Integral de Riemann.- Propiedades de la integral de Riemann.- Teorema del valor medio.- Teorema fundamental del Cálculo y regla de Barrow.- Aplicaciones de la integral.- Integrales impropias. |
B01 CB2 CB3 CB4 CG03 CG04 | |
TEMA 1.- SUCESIONES Y SERIES Sucesiones reales.- Límite de una sucesión.- Conceptos de convergencia y divergencia.- Series reales: de términos positivos, alternadas y de términos cualesquiera .- Conceptos de convergencia y divergencia.- Series geométricas y armónica simple.- Criterios de convergencia.- Series de potencias.- Teorema de Taylor.- Series de McLaurin y Taylor. |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | |
TEMA 2.- MÉTODOS NUMÉRICOS Resolución numérica de ecuaciones.- Interpolación polinómica.- Aproximación de funciones.- Diferenciación e integración numérica. |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | |
TEMA 3.- CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES Introducción a funciones de varias variables.- Superficies en el espacio.- Continuidad y límites.- Derivadas parciales.- Diferenciabilidad.- Regla de la cadena.- Derivadas direccionales.- Derivación implícita.- Optimización de funciones de varias variables.- Multiplicadores de Lagrange. |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | |
TEMA 4.- CÁLCULO INTEGRAL DE FUNCIONES DE VARIAS VARIABLES Integrales iteradas.- Integrales dobles y triples.- Aplicaciones.- Cambio de variables: coordenadas polares, cilíndricas y esféricas |
B01 CB2 CB3 CB4 CG03 CG04 CT01 |
Bibliografía
Bibliografía Básica
A. García, F. García, A. Gutiérrez, A. López, G. Rodríguez, A. de la Villa.
Cálculo I. Ed. Clagsa, 1998.
F. Martínez de la Rosa, C. Vinuesa Sánchez.
Matemáticas. Servicio de Publicaciones de la Universidad de Cádiz, 2003.
R.L. Burden, J. D. Faires. Análisis Numérico. International Thomson Editores, S.A., 2002.
Martínez, F. y Garrido, M.J. ``Matemáticas II". Servicio de Publicaciones. U.C.A. 1998.
A. García, A. López, G. Rodríguez, S. Romero, A. de la Villa.
Cálculo II. Teoría y problemas de funciones de varias variables", Clagsa, 1996.
R. Larson, R. Hostetler, B. Edwards.
Cálculo. Volúmenes I y II. Ed. McGraw-Hill.
V. Tomeo, I. Uña, J. San Martín.
Problemas resueltos de Cálculo en una variable. Ed. Thomson Paraninfo, 2005.
Braulio de Diego. Ejercicios de Análisis. Cálculo Diferencial e Integral. Ed. Deimos.
Ayres-Mendelson. Cálculo diferencial e integral. Ed. McGraw-Hill.
F. Granero. Ejercicios y problemas de Cálculo, Tomos I y II. Ed. Tebar Flores.
A. J. Arriaza Gómez, J. M. Calero Posada, L. Del Águila Garrido, A. Fernández Valles, F. Rambla Barreno, M. V. Redondo Neble, J. R. Rodríguez Galván. Prácticas de Matemáticas con Maxima.Matemáticas usando Software Libre.
Bibliografía Ampliación
B. Demidovich. Problemas y ejercicios de análisis matemático. Ed. Mir o Ed. Paraninfo.
Anti-Demidovich (1, 2, 3 y 4). Matematnka.
D. Kincaid, W. Cheney. Análisis Numérico. Addison-Wesley Iberoamericana, Wilmington 1994.
F. Guillén González, A. Doubova Krasotchenko. Un Curso de Cálculo Numérico: Interpolación, Aproximación, Integración y Resolución de Problemas
Diferenciales. Sevilla, España. Servicio de Publicaciones Universidad de Sevilla. 2007.
J. A. Sánchez Viña. E. Sánchez Mañes. Ejercicios y complementos de Análisis Matemático I. Tecnos.
![]() |
ÁLGEBRA Y GEOMETRIA |
|
Código | Nombre | |||
Asignatura | 10619001 | ÁLGEBRA Y GEOMETRIA | Créditos Teóricos | 5 |
Título | 10619 | GRADO EN INGENIERÍA ELÉCTRICA - ALGECIRAS | Créditos Prácticos | 2.5 |
Curso | 1 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Ninguno
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
ISMAEL | GONZALEZ | YERO | PROFESOR AYUDANTE DOCTOR | N |
EDUARDO | MENA | CARAVACA | Profesor Asociado | N |
CARLOS HUGO | TAVIO | DIAZ | PROFESOR ASOCIADO | N |
Juan Carlos | Valenzuela | Tripodoro | Profesor Titular Universidad | S |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; Estadística y optimización. | ESPECÍFICA |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | BÁSICA |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | BÁSICA |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado | BÁSICA |
CG03 | Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones | GENERAL |
CG04 | Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial. | GENERAL |
CT01 | Comunicación oral y/o escrita | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
RA | Aptitud para aplicar los conocimientos sobre: Álgebra Lineal; Geometría; Geometría Diferencial; Métodos Numéricos del Álgebra Lineal. |
RR | Ser capaz de resolver los problemas matemáticos que puedan plantearse en la ingeniería. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | Clases de teoría, ejercicios y problemas, principalmente resueltos por el profesor pero con trabajo previo por parte del alumnado, que sirvan para aclarar los conceptos teóricos analizados. Se dispondrá del campus virtual de la Universidad de Cádiz como soporte tecnológico de estas actividades. La metodología de enseñanza-aprendizaje hará uso de estas actividades, empleando como referente los modelos de innovación docente propuestos para las universidades andaluzas. Se potenciarán principalmente las metodologías activas, buscando en todo momento la implicación por parte del alumno en el proceso de aprendizaje. |
40 | Grande | |
02. Prácticas, seminarios y problemas | Sesiones de trabajo para la resolución de problemas prácticos, principalmente resueltos por el alumnado, con el profesor actuando como guía-apoyo. Se fomentará el trabajo cooperativo y la exposición pública de resultados. Se dispondrá del campus virtual de la Universidad de Cádiz como soporte tecnológico de estas actividades. La metodología de enseñanza-aprendizaje hará uso de estas actividades, empleando como referente los modelos de innovación docente propuestos para las universidades andaluzas. Se potenciarán principalmente las metodologías activas, buscando en todo momento la implicación por parte del alumno en el proceso de aprendizaje. |
10 | Mediano | |
03. Prácticas de informática | Sesiones de trabajo dirigidas a crear en el alumnado la capacidad de resolución de problemas mediante el uso de herramientas informáticas. Se combinarán exposiciones de conceptos y procedimientos por parte del profesor con actividades de resolución de problemas por parte del alumnado, de manera individual o en grupo. Se dispondrá del campus virtual de la Universidad de Cádiz como soporte tecnológico de estas actividades. La metodología de enseñanza-aprendizaje hará uso de estas actividades, empleando como referente los modelos de innovación docente propuestos para las universidades andaluzas. Se potenciarán principalmente las metodologías activas, buscando en todo momento la implicación por parte del alumno en el proceso de aprendizaje. |
10 | Reducido | |
10. Actividades formativas no presenciales | Tutorias a través del campus virtual (15) Estudio autónomo del alumno (30) |
45 | ||
11. Actividades formativas de tutorías | Tutorías individuales |
30 | ||
12. Actividades de evaluación | Evaluación y su preparación (15) |
15 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Realización de prueba final | Prueba escrita con ejercicios teorico-prácticos sobre los contenidos de la asignatura |
|
|
Realización de Pruebas de Progreso | Prueba escrita con ejercicios teórico-prácticos sobre los contenidos de la asignatura |
|
B01 CB2 CB3 CB4 CG03 CG04 CT01 |
Trabajo de realización de las Prácticas de Informática o prueba de conocimientos basada en la resolución de problemas de Algebra Lineal mediante un software científico | Análisis documental/ Rúbrica de valoración de documentos / Prueba de conocimiento |
|
B01 CB2 CB3 CB4 CG03 CG04 CT01 |
Procedimiento de calificación
Se evaluarán varias PRUEBAS DE PROGRESO (PPGR), que se realizarán a lo largo del curso. En las PPGR se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. Estas pruebas PPGR serán usualmente escritas, aunque podrian realizarse mediante exposicion oral en la pizarra por parte de los alumnos. Supondrán un 90% de la calificación global de la asignatura. El TRABAJO DE REALIZACIÓN DE LAS PRÁCTICAS DE INFORMÁTICA O LA PRUEBA DE CONOCIMIENTOS CORRESPONDIENTE(INFORM) tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado, y supondrá un 10% de la calificación global de la asignatura. El alumno que no supere una, o más de una, de las PPGR, deberá realizar un EXAMEN FINAL que se valorará de la misma forma que las PPGR (un 90% de la calificación final), siendo la Junta de Escuela quien establezca la fecha y el lugar de realización. Se considerará que ha adquirido las competencias de la asignatura aquel alumno que obtenga 5 o más puntos en la NOTA FINAL de la asignatura, según la siguiente fórmula: NOTA FINAL = INFORM (10%) + [PPGR ó EXAMEN FINAL (90%)] OBSERVACIÓN: Sólo se computará la nota media de las PPGR en caso de que el alumno las apruebe TODAS. En cualquier otro caso, deberá realizar el EXAMEN FINAL. Las notas Prácticas de Ordenador se guardan hasta la convocatoria de Septiembre del curso correspondiente.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
T01.- Matrices y determinantes |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | RA RR |
T02.- Sistemas de Ecuaciones Lineales y no Lineales |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | RA RR |
T03.- Espacio Vectorial R^n |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | RA RR |
T04.- Espacio Vectorial Euclideo R^n |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | RA RR |
T05.- Diagonalización de Matrices |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | RA RR |
T06.- Cónicas |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | RA RR |
T07.- Cuádricas |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | RA RR |
T08.- Curvas planas |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | RA RR |
T09.- Curvas Alabeadas |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | RA RR |
T10.- Superficies |
B01 CB2 CB3 CB4 CG03 CG04 CT01 | RA RR |
Bibliografía
Bibliografía Básica
De la Villa, A. (1998): Problemas de Álgebra con esquemas teóricos. Ed. Clagsa, Madrid.
Merino, L. y Santos, E. (2006): Álgebra Lineal con métodos elementales. Ed. Thomson Paraninfo, Madrid.
De Burgos, J. (2006): Álgebra Lineal y Geometría Cartesiana. Ed. McGraw-Hill, Madrid.
Grossman, S. (2007): Álgebra lineal con aplicaciones. Ed. McGraw-Hill. Mexico.
López, A. y De la Villa, A. (1997): Geometría Diferencial. Ed. Clagsa, Madrid.
Costa, A.; Gamboa, M. y Porto, A. (2005): Notas de Geometría Diferencial de Curvas y Superficies. Ed. Sanz y Torres, Madrid.
Ariza, O.; Camacho, J.C. y Sánchez, A. (2000): Álgebra lineal y Geometría en Escuelas Técnica. Ed. Los Autores.
De Burgos, J. (1994): Curso de Álgebra y Geometría. Ed. Alhambra Longman, Madrid.
De Diego, B.; Gordillo, E. y Valeiras, G. (1986): Problemas de Álgebra Lineal. Ed. Deimos.
Rubio, R.; Ríder, A. y Raya, A. (2007): Álgebra y Geometría lineal. Ed. Reverte, Madrid.
Costa, A., Gamboa, M., Porto, A. (2005): Ejercicios de Geometría Diferencial de Curvas y Superficies. Ed. Sanz y Torres, Madrid.
Bibliografía Ampliación
Rojo, J. y Martín, I. (1994): Ejercicios y Problemas de Álgebra Lineal. Ed McGraw-Hill, Madrid.
García, J.L. (2005): Test de Álgebra Lineal. Ed. AC, Madrid.
Bolos, V. (2007): Álgebra lineal y Geometría. Universidad de Extremadura, Cáceres.
Arvesú, J; Marcellán, F. y Sánchez, J. (2007): Problemas resueltos de álgebra lineal. Ed. Paraninfo, Madrid.
Castellet, M y Llerena, I. (2000): Álgebra Lineal y Geometría. Ed. Reverte, Madrid.
Cordero, L; Fernández, M. y Gray, A. (1995): Geometría Diferencial de Curvas y Superficies. Ed. Addison-Wesley.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente.