Fichas de asignaturas 2012-13
![]() |
AMPLIACIÓN DE MATEMÁTICAS |
|
Código | Nombre | |||
Asignatura | 40906003 | AMPLIACIÓN DE MATEMÁTICAS | Créditos Teóricos | 3.75 |
Título | 40906 | GRADO EN ARQUITECTURA NAVAL E INGENIERÍA MARÍTIMA | Créditos Prácticos | 3.75 |
Curso | 2 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Haber adquirido las competencias correspondientes a las asignaturas de Cálculo y Álgebra Lineal y Geometría.
Recomendaciones
Tener un hábito de estudio continuado.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
Mª. JOSE | BENÍTEZ | CABALLERO | PROFESORA SUSTITUTA INTERINA | N |
MARIA VICTORIA | REDONDO | NEBLE | Profesora Titular de Escuela Universitaria | S |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmicos numéricos; estadísticos y optimización. | ESPECÍFICA |
CB1 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio | GENERAL |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | GENERAL |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | GENERAL |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado | GENERAL |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | GENERAL |
G03 | Capacidad para el aprendizaje de nuevos métodos y teorías, y versatilidad para adaptarse a nuevas situaciones basándose en los conocimientos adquiridos en materias básicas y tecnológicas. | GENERAL |
G04 | Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y para comunicar y transmitir conocimientos, habilidades y destrezas | GENERAL |
T01 | Capacidad para la resolución de problemas | TRANSVERSAL |
T07 | Capacidad para el razonamiento crítico | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R-05 | Aplicar la Transformada de Laplace para la resolución de problemas de valores iniciales y modelos de Ingeniería. |
R-06 | Aplicar la trasformada rápida de Fourier para eliominar ruido de un conjunto de datos. |
R-07 | Clasficar Ecuaciones en Derivadas Parciales de acuerdo a su orden, linealidad o no linealidad, homogeneidad o no homogeneidad. |
R-01 | Comprender las definiciones de Integral de Trayectoria e Integral de Línea |
R-02 | Enunciar los Teoremas de Green, Stokes y Gauss. |
R-03 | Relacionar las Integrales de Superficie y las Integrales de Volumen |
R-04 | Resolver Ecuaciones Diferenciales Ordinarias de Primer Orden y de Orden Superior utilizando los métodos más comunes y mediante métodos numéricos |
R-08 | Resolver problemas de contorno usando Series de Fourier y métodos numéricos. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: Clases teóricas. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Método expositivo. Estudio de casos. En ellas el profesor expone las competencias y objetivos a alcanzar. Se enseñan los contenidos básicos del tema de forma estructurada. También se presentan problemas y casos particulares con la finalidad de aclarar y afianzar los contenidos. Se realiza un seguimiento temporal de la adquisición de conocimientos a través de preguntas en clase. |
30 | CB1 | |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases prácticas. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas. Aprendizaje basado en la resolución de ejercicios. En ellas se desarrollan actiivdades de apliación de los conocimientos a situaciones concretas que permiten profundizar y ampliar los conceptos expuestos en las clases teóricas, con un especial énfasis en el autoaprendizaje. Los alumnos eligen la técnica a utilizar, la aplicación del procedimiento y la interpretación de resultados. |
15 | B01 CB2 G03 G04 T01 T07 | |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de informática. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas haciendo uso de programas de cálculo simbólico. Sesiones en donde los alumnos resolveran un conjunto de problemas utilizando las técnicas descritas en 0.2 y usando aplicaciones informáticas de un programa de cálculo simbólico. |
15 | B01 CB3 T01 T07 | |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Contrato de aprendizaje. Estas sesiones contemplan el estudio y trabajo realizado por el alumno para comprender los contenidos impartidos en teoría, la resolución de ejercicios y problemas, así como la realización de búsquedas bibliográficas. También contempla las horas de realización de los tests de conocimientos básicos realizados a través del Campus Virtual de la asignatura, así como el Trabajo de Prácticas de Informática. |
86 | B01 CB2 CB3 | |
12. Actividades de evaluación | Examen final de la asignatura. |
4 | Grande | B01 CB1 CB2 CB3 CB4 CB5 G04 T07 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación y teniendo en cuenta las consideraciones incluidas en el procedimiento de calificación.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Pruebas para el Seguimiento de los de Conocimientos (test de Evaluación, Trabajos Grupales, Actividades Dirigidas) | Test/ Prueba objetiva de elección múltiple/ Análisis documental/ Rubrica de valoración de informes |
|
B01 |
Realización de Prueba de Progreso | Prueba escrita con ejercicios teóricos y prácticos sobre el contenido de la asignatura. |
|
B01 |
Realización de una Prueba Final | Prueba escrita compuesta por ejercicios de conocimientos teóricos y prácticos |
|
B01 |
Trabajo de realización de las prácticas de informática | Análisis documental/ Informes de Prácticas |
|
B01 |
Procedimiento de calificación
Se evaluará la realización de diversas actividades que se propondrán en el aula (presenciales y no presenciales), la prueba de progreso que se realizará a lo largo del curso y la participación activa del alumno mediante la entrega de tareas. También se valorará positivamente el adecuado comportamiento y la buena disposición en clase. En la prueba de progreso se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. Esta prueba será escrita. Para que elimine materia, la calificación debe ser superior o igual a 5 sobre 10. En todo caso, se podría eliminar materia únicamente hasta la convocatoria de febrero. Los tests de conocimientos básicos supondrán un 10% de la calificación global de la asignatura, y podrán ser propuestos y a realizar en el aula o a través del campus virtual de la asignatura. Las Prácticas de Informática tratarán sobre diferentes ejercicios a resolver con el correspondiente software utilizado y supondrá un 10% de la calificación global de la asignatura. Además, el alumno deberá realizar un Examen Final en el que se examine de todos los contenidos pendientes de la asignatura, siendo la Junta de Escuela la que establezca la fecha y el lugar de realización del mismo. La nota relativa a exámenes supondrá un 80% de la calificación final de la asignatura. Aquellos alumnos que no superen la asignatura en la convocatoria de febrero, deberán ir a los exámenes de las convocatorias de junio y septiembre con todos los contenidos. En estas convocatorias se tendrán en cuenta las calificaciones obtenidas en los test de conocimientos básicos y las prácticas de informática, realizados a lo largo de la impartición de la docencia, suponiendo un 20% de la nota final, mientras que la nota correspondiente a los exámenes repercutirá, al igual que en la convocatoria de febrero, en un 80% de dicha nota final. Se considerará que han adquirido las competencias de la asignatura y por tanto la han superado, aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas, siempre y cuando en la nota correspondiente a exámenes obtengan como mínimo un 4 sobre 10. En caso contrario, la calificación que aparecerá en el acta será la nota de los exámenes sobre 10.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
Tema 1: INTEGRALES DE LINEA Definiciones. Gradiente de un campo escalar. Campos vectoriales. Cálculo de la integral de línea. Campos vectoriales conservativos e independencia del camino. Teorema de Green |
B01 | R-01 R-02 RR |
Tema 2: INTEGRAL DE SUPERFICIE. Divergencia y Rotacional de un campo vectorial. Área de una superficie. Integral de Superficie. Cálculo de integrales de superficie. Flujo de un campo vectorial. Teorema de la divergencia o de Gauss. Teorema de Stokes. |
B01 | R-02 R-03 |
Tema 3: ECUACIONES DIFERENCIALES ORDINARIAS (EDO) Origen y definición. Conceptos fundamentales. Soluciones. Tipos de soluciones. Clasificación. |
B01 | R-04 |
Tema 4: EDO DE PRIMER ORDEN Teorema de existencia y unicidad de soluciones. Ecuaciones con variables separadas. Ecuaciones homogéneas. Ecuaciones exactas y reducibles a exactas. Ecuaciones lineales. Ecuación de Bernoulli. |
B01 | R-04 |
Tema 5: EDO LINEALES DE ORDEN SUPERIOR Introducción. Teorema de existencia y unicidad. Tratamiento vectorial de las soluciones. Ecuaciones homogéneas con coeficientes constantes. Método de los coeficientes indeterminados y método de variación de los parámetros. Cambios de variable. Ecuación de Euler. Reducción de un sistema de ecuaciones lineales a una ecuación de orden superior. Sistemas lineales con coeficientes constantes. |
B01 | R-04 |
Tema 6: RESOLUCIÓN NUMÉRICA DEL PROBLEMA DE CAUCHY PARA EDO. El método de Euler y sus variantes. |
B01 | R-04 |
Tema 7: TRANSFORMADA DE LAPLACE Introducción. Definición. Propiedades. Producto de Convolución. Transformada inversa. Propiedades. Aplicación a la resolución de ecuaciones diferenciales e integrales y sistemas de ecuaciones lineales. |
B01 | R-05 R-04 |
Tema 8: RESOLUCIÓN DE ECUACIONES DIFERENCIALES MEDIANTE SERIES DE POTENCIAS. INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES Y A SU RESOLUCIÓN NUMÉRICA. Aplicación de las series de potencias a la resolución de ecuaciones diferenciales. Introducción y clasificación de las Ecuaciones en Derivadas Parciales. Resolución numérica de problemas de contorno. |
B01 | R-06 R-07 R-08 |
Bibliografía
Bibliografía Básica
- LARSON-HOSTETLER, Cálculo. vol II, Ed. McGraw-Hill.
- García, A., López, A., Rodríguez, G., Romero, S. y de la Villa, A., Cálculo II. Teoría y problemas de funciones de varias variables. Ed.Clagsa, 1996.
- Kreyszig, E. Matemáticas avanzadas para Ingeniería I y II. Ed. Limusa Wiley, 2000
- DENNIS G. ZILL. Ecuaciones diferenciales con aplicaciones de modelado. International Thomson, 1997.
- MARTINEZ DE LA ROSA, F. Matemáticas II. Servicio de Publicaciones de la Universidad de Cádiz.
- KISELOV, A.; KRASNOV, M.; MAKARENKO, G., Problemas de ecuaciones diferenciales ordinarias, Moscú, Ed. Mir 1984
- MARCELLÁN, F.; CASASÚS, L.; ZARZO, A., Ecuaciones diferenciales. Problemas lineales y aplicaciones, Madrid, Ed. McGraw-Hill,1990
- GEORGE F. SIMMONS, Ecuaciones Diferenciales, con aplicaciones y notas históricas. Madrid. Ed. McGraw-Hill,1998
- GLIN JAMES, Matemáticas avanzadas para Ingeniería. México. Ed. Pearson Educación. 2002
-JESÚS SAN MARTÍN MORENO, VENANCIO TOMEO PERUCHA, ISAÍAS UÑA JUÁREZ, Métodos
Matemáticos. Ampliación de Matemáticas para Ciencias e Ingeniería. Thomson 2005.
-VVAA Métodos matemáticos. Ed.Thomson.2005
-MANUEL LÓPEZ RODRÍGUEZ. Problemas Resueltos de Ecuaciones Diferenciales. Ed. Thomson.2006
-RICHARD BRONSON, GABRIEL COSTA Ecuaciones Diferenciales. Schaum. Ed. Mc Graw Hill. 2008
- HENRY RICARDO. Ecuaciones Diferenciales: una introducción moderna. Ed. Reverte. 2008
-R.L. Burden, J. D. Faires. Análisis Numérico. International Thomson Editores, S.A., 2002.
-D. Kincaid, W. Cheney. Análisis Numérico. Addison-Wesley Iberoamericana, Wilmington 1994.
-F. Guillén González, A. Doubova Krasotchenko. Un Curso de Cálculo Numérico: Interpolación, Aproximación, Integración y Resolución de Problemas Diferenciales. Sevilla, España. Servicio de Publicaciones Universidad de Sevilla. 2007.
Bibliografía Específica
- Manual de prácticas de matemáticas con Maxima. A. J. Arriaza, L. del Águila, F. Rambla, M. V. Redondo, J. R. Rodríguez. G. Viglialoro. Servicio de Publicaciones de la Universidad de Cádiz, 2015.
![]() |
CÁLCULO |
|
Código | Nombre | |||
Asignatura | 40906001 | CÁLCULO | Créditos Teóricos | 3.75 |
Título | 40906 | GRADO EN ARQUITECTURA NAVAL E INGENIERÍA MARÍTIMA | Créditos Prácticos | 3.75 |
Curso | 1 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Ninguno.
Recomendaciones
Se recomienda haber cursado la opción científico-técnica de bachillerato. También se recomienda tener un hábito de estudio continuado sobre la asignatura.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
Alejandro | Pérez | Peña | Profesor Contratado Doctor | S |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmicos numéricos; estadísticos y optimización. | ESPECÍFICA |
CB1 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio | GENERAL |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | GENERAL |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | GENERAL |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado | GENERAL |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | GENERAL |
G03 | Capacidad para el aprendizaje de nuevos métodos y teorías, y versatilidad para adaptarse a nuevas situaciones basándose en los conocimientos adquiridos en materias básicas y tecnológicas. | GENERAL |
G04 | Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y para comunicar y transmitir conocimientos, habilidades y destrezas | GENERAL |
T01 | Capacidad para la resolución de problemas | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R07 | Calcular áreas y volúmenes. |
R03 | Comprender la definición de integral doble sobre un rectángulo como una suma de Riemann y su generalización a regiones más generales. |
R06 | Derivar e integrar funciones de una y de varias variables, y de funciones dadas en forma tabular mediante métodos numéricos. |
R01 | Enunciar los teoremas del valor medio. |
R05 | Interpretar geométricamente la integral triple como un volumen. |
R02 | Obtener extremos relativos, absolutos y condicionados de una función. |
R04 | Usar el cambio en el orden de integración. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: Clases Teóricas MÉTODO DE ENSEÑANZA-APRENDIZAJE: Método expositivo. Estudio de casos En ellas el profesor expone las competencias y objetivos a alcanzar, enseña los contenidos básicos de un tema, y presenta problemas y casos particulares con la finalidad de aclarar y afianzar los contenidos. Se realiza un seguimiento temporal de la adquisición de conocimientos a través de preguntas en clase. |
30 | Grande | B01 CB5 G03 T01 |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases Prácticas. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en Problemas. En ellas se desarollan actividades de aplicación de los conocimientos a situaciones concretas que permiten profundizar y ampliar los conceptos expuestos en las clases teóricas, con un especial énfasis en el autoaprendizaje. Los alumnos desarrollan las soluciones adecuadas, la aplicación de procedimientos y la interpretación de resultados. |
15 | Mediano | B01 G04 T01 |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de Informática. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas haciendo uso de programas de cálculo simbólico. Sesiones en donde los estudiantes realizaran un conjunto de problemas utilizando las aplicaciones informáticas de un programa de cálculo simbólico y su posterior interpretación de los datos |
15 | Reducido | B01 G03 T01 |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual/autónomo MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Contrato de aprendizaje Estas sesiones contemplan el estudio y trabajo realizado por el alumno para comprender los contenidos impartidos en teoría, la resolución de ejercicios y problemas, así como la realización de búsquedas bibliográficas. También contempla las horas de realización de los tests de conocimientos básicos realizados a través del Campus Virtual de la asignatura, así como el Trabajo de Prácticas de Informática. |
76 | Reducido | B01 G03 T01 |
11. Actividades formativas de tutorías | MODALIDAD ORGANIZATIVA: Tutorías y Seminarios Sesiones dedicadas a orientar y asesora al alumno sobre cómo abordar la realización de problemas sobre los distintos contenidos de la asignatura. |
6 | Reducido | B01 CB4 T01 |
12. Actividades de evaluación | Sesiones en las que se realizarán las distintas pruebas de progreso |
8 | Reducido | B01 CB1 CB2 CB3 CB4 CB5 G03 G04 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación y teniendo en cuenta las consideraciones que se detallan en el procedimiento de calificación. Además se considerará la claridad y la precisión en el proceso de resolución de problemas y el razonamiento en el problema a resolver.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Pruebas para el Seguimiento de los conocimientos (Test de conocimientos básicos, Actividades dirigias, Test de Autoevaluación) | Prueba objetiva de elección múltiple/Análisis documental/Rubrica de valoración de informes |
|
B01 T01 |
Realización de Pruebas de Progreso | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura |
|
B01 G03 T01 |
Realización de una Prueba Final | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura |
|
B01 G03 G04 T01 |
Trabajo de realización de las Prácticas de Informática | Análisis documental/Rúbrica de valoración de documentos |
|
B01 G04 T01 |
Procedimiento de calificación
Se evaluará tanto la realización de diversas actividades que se propondrán en el aula, pruebas de progreso que se realizarán a lo largo del curso y la participación activa del alumno mediante la entrega de tareas en el propio Aula o través del campus Virtual. También se valorará positivamente el adecuado comportamiento y la buena disposición en clase. En las pruebas de progreso se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. Estas pruebas serán usualmente escritas. Para que eliminen materia, la calificación debe ser superior o igual a 5 sobre 10. En todo caso, se podría eliminar materia únicamente hasta la convocatoria de Junio. Las pruebas de seguimiento de los conocimientos supondrán un 10% de la calificación global de la asignatura, y se realizarán a través del Campus Virtual de la asignatura o en las sesiones de problemas. El trabajo de realización de las Prácticas de Informática tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado, y supondrá un 10% de la calificación global de la asignatura. Además, el alumno deberá realizar un Examen Final en el que se examine de todos los contenidos pendientes de la asignatura, siendo la Junta de Escuela la que establezca la fecha y el lugar de realización del mismo. La nota relativa a exámenes supondrá un 80% de la calificación final de la asignatura. Aquellos alumnos que no superen la asignatura en la convocatoria de febrero, deberán ir a los exámenes de las convocatorias de junio y septiembre con todos los contenidos. En estas convocatorias se tendrá en cuenta las calificaciones obtenidas en las pruebas de seguimiento de los conocimientos y el trabajo de prácticas realizados a lo largo de la impartición de la docencia. Se considerará que han adquirido las competencias de la asignatura y por tanto la han superado, aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas, siempre y cuando en la nota correspondiente a exámenes obtengan como mínimo un 4 sobre 10, para la correspondiente media. Aquellos alumnos que no superen las pruebas de progreso no habrán adquirido las competencias y no superarán la asignatura.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
TEMA 0.- FUNCIONES DE UNA VARIABLE Lección 1.- Cálculo diferencial de funciones de una variable Números reales y complejos.- Definición de función.- Concepto de continuidad y límite.- Cálculo de límites.- Concepto de derivada.- Interpretación de la derivada.- Cálculo de derivadas.- Teoremas del valor medio.- Regla de LHôpital.- Derivación implícita. Lección 2.- Cálculo integral de funciones de una variable Función primitiva.- Cálculo de primitivas.- Problema del área de una región plana.- Integral de Riemann.- Propiedades de la integral de Riemann.- Teorema del valor medio.- Teorema fundamental del Cálculo y regla de Barrow.- Aplicaciones de la integral.- Integrales impropias. |
B01 | R07 R06 R01 R02 |
TEMA 1.- SUCESIONES Y SERIES Sucesiones reales.- Límite de una sucesión.- Conceptos de convergencia y divergencia.- Series reales: de términos positivos, alternadas y de términos cualesquiera .- Conceptos de convergencia y divergencia.- Series geométricas y armónica simple.- Criterios de convergencia.- Series de potencias.- Teorema de Taylor.- Series de McLaurin y Taylor. |
||
TEMA 2.- MÉTODOS NUMÉRICOS Resolución numérica de ecuaciones.- Interpolación polinómica.- Aproximación de funciones.- Diferenciación e integración numérica. |
B01 CB1 CB3 G03 | R06 |
TEMA 3.- CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES Introducción a funciones de varias variables.- Superficies en el espacio.- Continuidad y límites.- Derivadas parciales.- Diferenciabilidad.- Regla de la cadena.- Derivadas direccionales.- Derivación implícita.- Optimización de funciones de varias variables.- Multiplicadores de Lagrange. |
B01 | R06 R02 |
TEMA 4.- CÁLCULO INTEGRAL DE FUNCIONES DE VARIAS VARIABLES Integrales iteradas.- Integrales dobles y triples.- Aplicaciones.- Cambio de variables: coordenadas polares, cilíndricas y esféricas. |
B01 CB3 T01 | R07 R03 R06 R05 R04 |
TEMA 5: INTRODUCCIÓN AL ANÁLISIS COMPLEJO |
B01 G03 T01 |
Bibliografía
Bibliografía Básica
A. García, F. García, A. Gutiérrez, A. López, G. Rodríguez, A. de
la Villa. Cálculo I. Ed. Clagsa, 1998.
F. Martínez de la Rosa, C. Vinuesa Sánchez.
Matemáticas. Servicio de Publicaciones de la Universidad de Cádiz, 2003.
Análisis Numérico.
R.L. Burden, J. D. Faires.
International Thomson Editores, S.A., 2002.
Martínez, F. y Garrido, M.J. ``Matemáticas II". Servicio de Publicaciones.
U.C.A. 1998.
A. García, A. López, G. Rodríguez, S. Romero, A. de la Villa.
Cálculo II. Teoría y problemas de funciones de varias variables", Clagsa, 1996.
R. Larson, R. Hostetler, B. Edwards.
Cálculo. Ed. McGraw-Hill. Volúmenes I y II.
V. Tomeo, I. Uña, J. San Martín.
Problemas resueltos de Cálculo en una variable. Ed. Thomson Paraninfo, 2005.
Braulio de Diego. Ejercicios de Análisis. Cálculo Diferencial e Integral. Ed. Deimos.
Ayres-Mendelson. Cálculo diferencial e integral. Ed. McGraw-Hill.
F.Granero. Ejercicios y problemas de Cálculo, Tomos I y II. Ed. Tebar Flores.
Manual de prácticas de matemáticas con Maxima. A. J. Arriaza, L. del Águila, F. Rambla, M. V. Redondo, J. R. Rodríguez. G. Viglialoro. Servicio de Publicaciones de la Universidad de Cádiz, 2015.
Bibliografía Ampliación
B. Demidovich. Problemas y ejercicios de análisis matemático. Ed. Mir o Ed. Paraninfo.
Anti-Demidovich (1, 2, 3 y 4). Matematnka.
D. Kincaid, W. Cheney. Análisis Numérico. Addison-Wesley Iberoamericana, Wilmington 1994.
F. Guillén González, A. Doubova Krasotchenko. Un Curso de Cálculo Numérico: Interpolación, Aproximación, Integración y Resolución de Problemas Diferenciales. Sevilla, España. Servicio de Publicaciones Universidad de Sevilla. 2007.
J. A. Sánchez Viña. E. Sánchez Mañes. Ejercicios y complementos de Análisis Matemático I. Tecnos.
![]() |
ESTADÍSTICA Y OPTIMIZACIÓN |
|
Código | Nombre | |||
Asignatura | 40906004 | ESTADÍSTICA Y OPTIMIZACIÓN | Créditos Teóricos | 5 |
Título | 40906 | GRADO EN ARQUITECTURA NAVAL E INGENIERÍA MARÍTIMA | Créditos Prácticos | 2.5 |
Curso | 1 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS | ||
Departamento | C146 | ESTADISTICA E INVESTIGACION OPERATIVA |
Requisitos previos
Ninguno
Recomendaciones
Es recomendable haber cursado la opción científico-técnica del bachillerato.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
Mª. JOSE | BENÍTEZ | CABALLERO | PROFESORA SUSTITUTA INTERINA | N |
ANGEL | BERIHUETE | MACIAS | PROFESOR SUSTITUTO INTERINO | S |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmicos numéricos; estadísticos y optimización. | ESPECÍFICA |
CB1 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio | GENERAL |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | GENERAL |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | GENERAL |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado | GENERAL |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | GENERAL |
G03 | Capacidad para el aprendizaje de nuevos métodos y teorías, y versatilidad para adaptarse a nuevas situaciones basándose en los conocimientos adquiridos en materias básicas y tecnológicas. | GENERAL |
G04 | Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y para comunicar y transmitir conocimientos, habilidades y destrezas | GENERAL |
T01 | Capacidad para la resolución de problemas | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R-01 | 1.- Sintetizar y analizar conjuntos de datos. |
R-02 | 2.- Identificar situaciones en las que aparecen las distribuciones probabilísticas más usuales. |
R-03 | 3.- Aplicar los principales métodos de la Inferencia Estadística. |
R-04 | 4.- Identificar problemas de Optimización. |
R-05 | 5.- Resolver problemas de Optimización aplicados a la Ingeniería. |
R-06 | 6.- Aplicar las técnicas mediante un software estadístico. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | Trabajo presencial en el aula, a través de clases de teoría analizando los contenidos básicos. |
30 | Grande | B01 CB1 CB2 CB3 CB4 CB5 G03 G04 T01 |
02. Prácticas, seminarios y problemas | Trabajo presencial en el aula, a través de clases prácticas basadas en la resolución y/o impostación de problemas. Paralelamente a las clases teóricas, se proponen clases de problemas interesantes que recogen los temas tratados de forma teórica, con el objeto de profundizar todos los aspectos de la asignatura. |
10 | Mediano | B01 CB1 CB2 CB3 CB4 CB5 G03 G04 T01 |
03. Prácticas de informática | Se llevarán a cabo sesiones de ordenador basadas en la resolución de problemas; en estas sesiones el alumno aplicará las herramientas informáticas de un programa apropiado. |
10 | Reducido | B01 CB3 G03 G04 T01 |
08. Teórico-Práctica | 10 | |||
10. Actividades formativas no presenciales | Estudio y trabajo individual. El objetivo último de esta actividad es que el alumno, por medio de sesiones de estudio individual, comprenda los contenidos impartidos en teoría, la resolución de ejercicios y problemas, así como la realización de búsquedas bibliográficas. |
85 | Reducido | B01 CB3 G03 G04 T01 |
12. Actividades de evaluación | Sesiones periódicas a través de las cuales llevarán a cabo las diferentes pruebas de progreso. Estas actividades se programarán reservando aula en horario adecuado no coincidente con otras actividades. |
5 | Grande | B01 CB1 CB2 CB3 CB4 CB5 G03 G04 T01 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura tendrá en cuenta las puntuaciones obtenidas en cada una de las actividades, de la forma que se especifica en el procedimiento de calificación. Para superar la asignatura el alumno deberá tener un mínimo de un 50% de la parte de Estadística y un mínimo del 50% en la parte de Optimización.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Prueba final | Prueba escrita compuesta por cuestiones de tipo teórico y práctico tanto de la parte de Estadística como de la parte de Optimización. |
|
B01 CB1 CB2 CB3 CB4 CB5 G03 G04 T01 |
Pruebas de progreso | Prueba escrita con ejercicios teóricos y prácticos sobre los contenidos de la asignatura que podrán ser resolubles mediante el software adecuado. |
|
B01 CB1 CB2 CB3 CB4 CB5 G03 G04 T01 |
Procedimiento de calificación
El alumno podrá obtener hasta un 30% de la nota final a través de las actividades realizadas en las pruebas de progreso y el resto corresponderá a la prueba final. Si el alumno no superase el 50% en alguna de las partes, la calificación sería el mínimo entre un 4 y la calificación media final obtenida
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
1.- Estadística Descriptiva |
B01 CB1 CB2 CB3 CB4 CB5 G03 G04 T01 | R-01 R-06 |
2.- Teoría de la Probabilidad |
B01 CB3 CB4 G03 G04 T01 | R-02 R-06 |
3.- Inferencia Estadística |
B01 CB3 G03 G04 T01 | R-03 R-06 |
4.- Optimización |
B01 CB3 CB4 G03 G04 T01 | R-04 R-05 R-06 |
5.- Optimización lineal |
B01 CB3 CB5 G03 G04 T01 | R-01 R-04 R-05 |
6.- Optimización no lineal |
B01 T01 | R-01 R-04 R-05 |
Bibliografía
Bibliografía Básica
ESTADÍSTICA
- Arriaza Gómez, A.J. et al. (2008). Estadística básica con R y R-Commander. Servicio de publicaciones de la Universidad de Cádiz. ISBN: 978-84-9828-186-6
- Casas Sánchez, J.M., et al. (1998) Problemas de Estadística Descriptiva, Probabilidad e Inferencia. Ediciones Pirámide.
- Espejo, I. et al. (2006). Estadística Descriptiva y Probabilidad. Servicio de publicaciones de la Universidad de Cádiz.
- Espejo, I. et al. (2007). Inferencia Estadística: Teoría y Problemas. Servicio de publicaciones de la Universidad de Cádiz.
- Montgomery, D. (1991). Introducción al Control Estadístico de la Calidad. México, Grupo Editorial Iberoamericana.
- Montgomery, D. (2004). Probabilidad y Estadística Aplicadas a la Ingeniería.
México, Limusa Weley. - Tomeo V. et al. (2003). Lecciones de Estadística Descriptiva. Madrid, Thomson- Paraninfo
- Uña, I. et al. (2003). Lecciones de Cálculo de Probabilidad. Madrid, Thomson.
OPTIMIZACIÓN
-
Steven C. Chapra, Raymond P. Canale (1999). Métodos Numéricos para Ingenieros. McGraw-Hill
-
Bazaraa, M. S. y Jarvis, J. J. (1996). Programación Lineal y Flujo en Redes. Limusa.
-
Luenberger, David E. (1989). Programación Lineal y no Lineal. Addison-Wesley Iberoamericana.
-
Calvete, H. I, y Mateo, P. M. (1994). Programación Lineal, Entera y Meta. Problemas y Aplicaciones, Prensa Universitaria de Zaragoza.
Bibliografía Ampliación
ESTADÍSTICA
-
González Manteiga, M.T. y Pérez de Vargas Luque, A. (2009). Estadística Aplicada. Ediciones Díaz de Santos.
OPTIMIZACIÓN
-
Bazaraa, M. y Shetty, C. (1979). Nonlinear Programming: Theory and Algorithms. Wiley.
-
Salazar González, J.J. (2001). Programación matemática. Editorial Díaz de Santos, S.A.
-
Ríos Insua, S. (1996). Investigación Operativa. Programación Lineal y Aplicaciones. Editorial Centro de Estudios Ramón Areces.
![]() |
ÁLGEBRA LINEAL Y GEOMETRIA |
|
Código | Nombre | |||
Asignatura | 40906002 | ÁLGEBRA LINEAL Y GEOMETRIA | Créditos Teóricos | 5 |
Título | 40906 | GRADO EN ARQUITECTURA NAVAL E INGENIERÍA MARÍTIMA | Créditos Prácticos | 2.5 |
Curso | 1 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Ninguno
Recomendaciones
Se recomienda haber cursado la opción científico-técnica de Bachillerato y tener unas nociones mínimas sobre los números reales y el cálculo de funciones de una variable. También se recomienda asistir a clase y tener un hábito de estudio continuado sobre la asignatura.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
Mª. JOSE | BENÍTEZ | CABALLERO | PROFESORA SUSTITUTA INTERINA | S |
JUAN IGNACIO | GARCÍA | GARCÍA | Profesor Titular de Universidad | N |
MARIA VICTORIA | REDONDO | NEBLE | Profesora Titular de Escuela Universitaria | N |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
B01 | Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmicos numéricos; estadísticos y optimización. | ESPECÍFICA |
CB1 | Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio | GENERAL |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | GENERAL |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | GENERAL |
CB4 | Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado | GENERAL |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | GENERAL |
G03 | Capacidad para el aprendizaje de nuevos métodos y teorías, y versatilidad para adaptarse a nuevas situaciones basándose en los conocimientos adquiridos en materias básicas y tecnológicas. | GENERAL |
G04 | Capacidad para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y para comunicar y transmitir conocimientos, habilidades y destrezas | GENERAL |
T01 | Capacidad para la resolución de problemas | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R-03 | Aplicar métodos numéricos para la resolución de ecuaciones no lineales. |
R-04 | Clasificar cónicas y cuádricas. |
R-09 | Determinar el vector normal y el plano tangente a una superficie. |
R-06 | Determinar los elementos del triedro de Frenet. Calcular la curvatura y torsión de una curva. |
R-08 | Diferenciar las diferentes expresiones de una superficie. |
R-05 | Identificar las expresiones de una curva. Hallar la longitud de una curva. |
R-01 | Manejar con fluidez los principales conceptos del Álgebra Lineal: espacios vectoriales, autovalores, autovectores y diagonalización. |
R-07 | Representar curvas en el plano y en el espacio. |
R-02 | Resolver sistemas de ecuaciones lineales y no lineales mediante métodos directos e iterativos. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: Clases Teóricas MÉTODO DE ENSEÑANZA-APRENDIZAJE: Método expositivo. Estudio de casos En ellas el profesor expone las competencias y objetivos a alcanzar. Se enseña los contenidos básicos de un tema, logicamente estructurado. También se presentan problemas y casos particulares con la finalidad de afianzar los contenidos. Se realiza un seguimiento temporal de la adquisición de conocimientos a través de preguntas en clase. Las pruebas parciales escritas sobre los contenidos de la materia se harán dentro de estas horas. |
40 | Grande | B01 CB5 G03 |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases Prácticas. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en Problemas. En ellas se desarollan actividades de aplicación de los conocimientos a situaciones concretas que permiten profundizar y ampliar los conceptos expuestos en las clases teóricas, con un especial énfasis en el autoaprendizaje. Los alumnos desarrollan las soluciones adecuadas, la aplicación de procedimientos y la interpretación de resultados. |
10 | Mediano | B01 G04 T01 |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de Informática. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas. Sesiones en donde los estudiantes realizaran un conjunto de problemas utilizando las aplicaciones informáticas de un programa de cálculo simbólico y su posterior interpretación de los datos. Las pruebas parciales de prácticas de ordenador se harán dentro de estas horas. |
10 | Reducido | B01 G04 T01 |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual/autónomo MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Contrato de aprendizaje Estas sesiones contemplan el estudio y trabajo realizado por el alumno para comprender los contenidos impartidos en teoría, la resolución de ejercicios y problemas, así como la realización de búsquedas bibliográficas. |
86 | Reducido | B01 G03 G04 T01 |
12. Actividades de evaluación | Examen final de la asignatura. |
4 | Grande | B01 G03 G04 T01 |
Evaluación
Criterios Generales de Evaluación
La calificación general de la asignatura será la suma de las puntuaciones obtenidas en cada una de las actividades, según su ponderación y teniendo en cuenta las consideraciones incluidas en el procedimiento de calificación.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Pruebas para el Seguimiento de los de Conocimientos (test de Evaluación, Trabajos Grupales, Actividades Dirigidas) | Test/ Prueba objetiva de elección múltiple/ Análisis documental/ Rubrica de valoración de informes |
|
B01 T01 |
Realización de Pruebas de Progreso | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura |
|
B01 G03 G04 T01 |
Realización de una Prueba Final | Prueba escrita compuesta por Ejercicios de conocimientos teóricos y prácticos. |
|
B01 G03 G04 T01 |
Trabajo de realización de las Prácticas de Informática | Análisis documental/Rúbrica de valoración de documentos |
|
B01 G04 T01 |
Procedimiento de calificación
Se evaluará la realización de diversas actividades que se propondrán en el aula (presenciales y no presenciales), la prueba de progreso que se realizará a lo largo del curso y la participación activa del alumno mediante la entrega de tareas. También se valorará positivamente el adecuado comportamiento y la buena disposición en clase. En la prueba de progreso se valorará la adecuación, claridad, coherencia, justificación y precisión en las respuestas. Esta prueba será escrita. Para que elimine materia, la calificación debe ser superior o igual a 5 sobre 10. En todo caso, se podría eliminar materia únicamente hasta la convocatoria de febrero. Los tests de conocimientos básicos supondrán un 10% de la calificación global de la asignatura, y podrán ser propuestos y a realizar en el aula o a través del campus virtual de la asignatura. Las Prácticas de Informática tratarán sobre diferentes ejercicios a resolver con el correspondiente software utilizado y supondrá un 10% de la calificación global de la asignatura. Además, el alumno deberá realizar un Examen Final en el que se examine de todos los contenidos pendientes de la asignatura, siendo la Junta de Escuela la que establezca la fecha y el lugar de realización del mismo. La nota relativa a exámenes supondrá un 80% de la calificación final de la asignatura. Aquellos alumnos que no superen la asignatura en la convocatoria de junio, deberán ir a los exámenes de las convocatorias de septiembre y febrero con todos los contenidos, equivalente al 80% de la calificación. En estas convocatorias se tendrán en cuenta las calificaciones obtenidas en los test de conocimientos básicos y las prácticas de informática, realizados a lo largo de la impartición de la docencia, lo que supondrá el 20% de la nota restante. Se considerará que han adquirido las competencias de la asignatura y por tanto la han superado, aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas, siempre y cuando en la nota correspondiente a exámenes obtengan como mínimo un 4 sobre 10. En caso contrario, la calificación que aparecerá en el acta será la nota del examen sobre 10.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
01. MATRICES Y DETERMINANTES Definición de matriz.- Operaciones lineales con matrices.- Producto de matrices.- Matriz traspuesta. Propiedades.- Tipos de matrices.- Matriz inversa. Unicidad y propiedades.- Operaciones elementales. Matrices elementales.- Matrices equivalentes.- Forma canónica de Hermite.- Método de Gauss-Jordan para el cálculo de la inversa de una matriz.- Rango de una matriz.- Cálculo del rango mediante operaciones elementales.- Definición y propiedades del determinante de una matriz cuadrada.- Aplicación de los determinantes. |
B01 | R-01 |
02. SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES Terminología y notaciones. -Sistemas equivalentes. -Método de eliminación de Gauss. -Teorema de Rouché-Fröbenius. -Sistemas homogéneos: Espacio nulo de una matriz. -Resolución de sistemas de ecuaciones mediante métodos numéricos directos e iterativos. Factorizaciones LU y Cholesky. Métodos de Jacobi y Gauss-Seidel. |
B01 | R-03 R-02 |
03. ESPACIOS VECTORIALES Definición y propiedades. Espacio vectorial Rn. - Dependencia e independencia lineal. Propiedades.- Base y dimensión de un espacio vectorial.- Coordenadas de un vector.- Cambio de base en Rn.- Subespacios vectoriales. Caracterización.- Ecuaciones de un subespacio.- Base y dimensión de un subespacio. |
B01 | R-01 |
04. ESPACIO VECTORIAL EUCLIDEO Producto escalar.- Módulo de un vector y ángulo entre vectores.- Bases ortogonales y ortonormales.- Método de ortonormalización de Gram-Schmidt. |
B01 | R-01 |
05. DIAGONALIZACIÓN Aplicaciones lineales. Matriz asociada a un endomorfismo.- Autovalores y autovectores de una matriz cuadrada.- Propiedades.- Matriz diagonalizable: Diagonalización.- Diagonalización de matrices simétricas por semejanza ortogonal. Potencias de una matriz diagonalizable. |
B01 | R-01 |
06. CÓNICAS Definición de cónica. Ecuación matricial.- Ecuación reducida de una cónica.- Clasificación y elementos principales de las cónicas.-Estudio de las cónicas ordinarias. |
B01 | R-04 R-01 |
07. CUÁDRICAS Definición de cuádrica. Ecuación matricial.- Ecuación reducida de una cuádrica.- Clasificación de las cuádricas.- Estudio de las cuádricas ordinarias. |
B01 | R-04 |
08. CURVAS PLANAS Concepto de curva plana.- Expresiones de una curva: paramétrica, explícita e implícita.- Tangente y normal en un punto de una curva.- Puntos singulares y puntos ordinarios.- Curvas planas en coordenadas polares. |
R-07 | |
09. CURVAS ALABEADAS Definición de curva en el espacio.- Ecuaciones de una curva.- Punto ordinario y punto singular.- Longitud de un arco de curva.- Triedro y Fórmulas de Frenet.- Recta tangente, normal y Binormal.- Curvatura y torsión.- Planos osculador, normal y rectificante. |
B01 | R-06 R-05 R-07 |
10. SUPERFICIES Concepto de superficie.- Plano tangente y recta normal a una superficie.- Superficies de revolución y de traslación.- Superficies cónicas y cilíndricas. |
B01 | R-09 R-08 |
Bibliografía
Bibliografía Básica
· Ariza, O.; Camacho, J.C. y Sánchez, A. (2000): Álgebra lineal y Geometría en Escuelas Técnicas. Ed. Los Autores.
· Costa, A., Gamboa, M., Porto, A. (2005): Ejercicios de Geometría Diferencial de Curvas y Superficies. Ed. Sanz y Torres, Madrid.
· Costa, A.; Gamboa, M. y Porto, A. (2005): Notas de Geometría Diferencial de Curvas y Superficies. Ed. Sanz y Torres, Madrid.
· De Burgos, J. (1994): Curso de Álgebra y Geometría. Ed. Alhambra Longman, Madrid.
· De Burgos, J. (2006): Álgebra Lineal y Geometría Cartesiana. Ed. McGraw-Hill, Madrid.
· De Diego, B.; Gordillo, E. y Valeiras, G. (1986): Problemas de Álgebra Lineal. Ed. Deimos.
· De la Villa, A. (1998): Problemas de Álgebra con esquemas teóricos. Ed. Clagsa, Madrid.
· Grossman, S. (2007): Álgebra lineal con aplicaciones. Ed. McGraw-Hill. Mexico.
· López, A. y De la Villa, A. (1997): Geometría Diferencial. Ed. Clagsa, Madrid.
· Merino, L. y Santos, E. (2006): Álgebra Lineal con métodos elementales. Ed. Thomson Paraninfo, Madrid.
· Rubio, R.; Ríder, A. y Raya, A. (2007): Álgebra y Geometría lineal. Ed. Reverte, Madrid.
Bibliografía Específica
- Manual de prácticas de matemáticas con Maxima. A. J. Arriaza, L. del Águila, F. Rambla, M. V. Redondo, J. R. Rodríguez. G. Viglialoro. Servicio de Publicaciones de la Universidad de Cádiz, 2015.
Bibliografía Ampliación
- Rojo, J. y Martín, I. (1994): Ejercicios y Problemas de Álgebra Lineal. Ed McGraw-Hill, Madrid.
- García, J.L. (2005): Test de Álgebra Lineal. Ed. AC, Madrid
- Bolos, V. (2007): Álgebra lineal y Geometría. Universidad de Extremadura, Cáceres.
- Arvesú, J; Marcellán, F. y Sánchez, J. (2007): Problemas resueltos de Álgebra Lineal. Ed. Paraninfo, Madrid.
- Castellet, M y Llerena, I. (2000): Álgebra Lineal y Geometría. Ed. Reverte, Madrid.
- Cordero, L; Fernández, M. y Gray, A. (1995): Geometría Diferencial de Curvas y Superficies. Ed. Addison-Wesley<!--[endif]-->.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente.