Usted está aquí: Inicio web asignaturas

 

Fichas de asignaturas 2012-13


MECÁNICA DE FLUIDOS

 

  Código Nombre    
Asignatura 10620012 MECÁNICA DE FLUIDOS Créditos Teóricos 6
Título 10620 GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL - ALGECIRAS Créditos Prácticos 1.5
Curso   2 Tipo Obligatoria
Créd. ECTS   6    
Departamento C142 FISICA APLICADA    
Departamento C147 MAQUINAS Y MOTORES TERMICOS    

 

Requisitos previos

Cumplir los requisitos establecidos por la Universidad de Cádiz sobre régimen de
permanencia de los estudiantes del grado de Ingeniería en Tecnologías
Industriales.

 

Recomendaciones

Es muy recomendable que el alumno haya adquirido las competencias
correspondientes a las materias impartidas en semestres anteriores, y tener
aprobadas las asignaturas de Física y Matemáticas.

 

Profesores

Nombre Apellido 1 Apellido 2 C.C.E. Coordinador
JUAN LUIS FONCUBIERTA BLÁZQUEZ PROFESOR SUSTITUTO INTERINO N
FRANCISCO JAVIER GONZALEZ GALLERO Profesor Titular Universidad S

 

Competencias

Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.

Identificador Competencia Tipo
CE02 Conocimientos de los principios básicos de la mecánica de fluidos y su aplicación a la resolución de problemas en el campo de la ingeniería. Cálculo de tuberías, canales y sistemas de fluidos ESPECÍFICA
CG04 Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial. GENERAL
CG07 Capacidad de analizar y valorar el impacto social y medioambiental de las soluciones técnicas. GENERAL
CT01 Comunicación oral y/o escrita TRANSVERSAL
CT02 Trabajo autónomo TRANSVERSAL

 

Resultados Aprendizaje

Identificador Resultado
R1 Capacidad para resolver problemas de Mecánica de Fluidos que refuercen el conocimiento teórico.
R2 Deducir e interpretar correctamente las ecuaciones de gobierno del movimiento de un fluido a partir de los principios físicos fundamentales de conservación de masa, cantidad de movimiento y energía.
R3 Ser capaz de analizar fenómenos de la Mecánica de fluidos y tomar e interpretar los datos experimentales necesarios para su estudio.

 

Actividades formativas

Actividad Detalle Horas Grupo Competencias a desarrollar
01. Teoría
Clases magistrales en las que se explican los
contenidos teóricos básicos de la asignatura.
Dos horas serán impartidas en lengua inglesa.
40
03. Prácticas de informática
Sesiones de trabajo individual en el aula de
Informática supervisadas por el profesor.
4
04. Prácticas de laboratorio
Sesiones de trabajo en grupo en el laboratorio
supervisadas por el profesor.
8
08. Teórico-Práctica
8
10. Actividades formativas no presenciales
Se contempla el trabajo realizado por el alumno
para comprender los contenidos impartidos en
teoría y problemas, la elaboración de informes de
las prácticas, así como la realización de
búsquedas bibliográficas y la ampliación de
conocimientos sobre temas aconsejados por el
profesor.
81
11. Actividades formativas de tutorías
Tutorías Individuales
5
12. Actividades de evaluación
Examen final
4 Grande

 

Evaluación

Criterios Generales de Evaluación

- La calificación final del alumno se obtendrá como suma de las calificaciones
obtenidas en cada una de las actividades recogidas en los procedimientos de
evaluación.
- La asignatura se considerará superada cuando se obtenga una valoración global
igual o superior a 5 puntos, teniendo presentes los requisitos mínimos descritos
en el procedimiento de calificación.
* Criterios de evaluación:
- Claridad, coherencia y rigor en las respuestas a cuestiones, problemas e
informes (de laboratorio).
- Justificación y razonamiento de las estrategias seguidas en la resolución de
ejercicios.
- Calidad de la presentación.
- Organización del trabajo experimental en laboratorio.
Se evaluará de forma específica:
- La capacidad para desarrollar los aspectos teóricos y de resolver problemas
prácticos de la Dinámica de Fluidos.

 

Procedimiento de Evaluación

Tarea/Actividades Medios, Técnicas e Instrumentos Evaluador/es Competencias a evaluar
Examen final que corresponderá a cada uno de los bloques en los que se divide el programa de la asignatura. Prueba escrita.
  • Profesor/a
Prácticas de laboratorio. Valoración del trabajo desarrollado en el laboratorio. Memoria de resultados.
  • Profesor/a

 

Procedimiento de calificación

La calificación final (CF) que se incorporará al acta de la asignatura se
evaluará como:
CF = 80% CE + 10% CP + 5%CPL + 5% CPI

Donde:
- CE = Calificación del examen final.
- CP = Calificación obtenida de la nota media de los problemas propuestos.
- CPL = Calificación obtenida tras la evaluación de las prácticas de laboratorio
(trabajo en laboratorio y memorias de prácticas).
- CPI = Calificación obtenida tras la realización de las prácticas de informática
(trabajo en aula y memorias de prácticas).

Para aprobar la asignatura el alumno debe cumplir los siguientes requisitos:
- La calificación final (CF) debe ser igual o superior a 5 puntos.
- Asistencia obligatoria a las prácticas de laboratorio y de informática.
- Si las calificaciones medias de los problemas propuestos (CP), prácticas de
laboratorio (CPL) y prácticas de informática (CPI) son todas iguales o superiores
a 5, el mínimo en la nota de del examen final (CE) podrá ser de 4 puntos, en caso
contrario, la calificación de dicho examen final deberá ser igual o superior a 5
puntos.

 

Descripcion de los Contenidos

Contenido Competencias relacionadas Resultados de aprendizaje relacionados
            Cálculo de tuberías, canales y sistemas de fluidos.
Tema 11.- Flujo laminar unidireccional en líquidos
Tema 12.- Fluidos ideales
        
CE02 CG04 CT01 R1 R2 R3
            Principios básicos de mecánica de fluidos.
Tema 4.- Estática de fluidos
Tema 5.- Cinemática
Tema 6.- Integrales extendidas a volúmenes finitos
Tema 7.- Ecuación de conservación de la masa: Ecuación de continuidad
Tema 8.- Ecuación de conservación de la cantidad de movimiento. Forma integral. Forma diferencial
Tema 9.- Ecuación de conservación de la energía. Forma integral. Forma diferencial

        
CE02 CT01 R1 R2 R3
            Propiedades de los fluidos y análisis dimensional.
Tema 1.- Introducción
Tema 2.- Fuerzas que actúan sobre un fluido
Tema 3.- Termodinámica. Fenómenos de transporte
Tema 10.- Análisis Dimensional
        
CE02 CT01 R1 R3

 

Bibliografía

Bibliografía Básica

TEORÍA:

  • Acheson, D.J. Elementary Fluid Dynamics. Clarendon Press. Oxford, 1990.
  • Crespo Martínez, Antonio . Mecánica de Fluidos. Ediciones Paraninfo, 2010.
  • Fernández Feria, Ramón; Ortega Casanova, Joaquín. MECANICA DE FLUIDOS. Notas de clase: Teoría, problemas y prácticas. http://www.fluidmal.uma.es/NCMF/Notas%20de%20clase_2014.pdf
  • Fernández Francos, Joaquín; Velarde Suárez, Sandra; González Pérez, José; Arribas Ramírez, Juan José. Introducción a la Mecánica de Fluidos. Servicio de Publicaciones de la Universidad de Oviedo. 1997.
  • Streeter, V.L., Wylie, E.B. Mecánica de Fluidos. Mc Graw Hill, 1988.
  • White, F. Mecánica de Fluidos. Mc Graw Hill, 2002.

PROBLEMAS:

  • Bergadá Graño, J. M. Mecánica de Fluidos. Problemas resueltos.UPCGRAU, 2011.
  • Fuertes Miguel, V.S. Problemas de Mecánica de Fluidos. Universidad Politécnica de Valencia, 1995.

 

Bibliografía Específica

  • Chorin, A.J., Marsden J.E. A mathematical introduction to fluid mechanics. Springer-Verlag, 1993.
  • Schlichting, H. y K. Gersten. Boundary Layer Theory. Mc Graw Hill, 2000.
  •  





    TERMOTECNIA

     

      Código Nombre    
    Asignatura 10620011 TERMOTECNIA Créditos Teóricos 5
    Título 10620 GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL - ALGECIRAS Créditos Prácticos 2.5
    Curso   2 Tipo Obligatoria
    Créd. ECTS   6    
    Departamento C147 MAQUINAS Y MOTORES TERMICOS    

     

    Recomendaciones

    Haber superado las materias correspondientes a las competencias de Formación
    Básica de Física y Matemáticas , citadas en las correspondientes competencias
    básicas:
    
    B02. Comprensión y dominio de los conceptos básicos sobre las leyes generales de
    la mecánica, termodinámica, campos y ondas y electromagnetismo y su aplicación
    para la resolución de problemas propios de la ingeniería.
    
    B01. Capacidad para la resolución de los problemas matemáticos que puedan
    plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre:
    álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral;
    ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica
    numérica.
    
    Se recomienda la implicación del alumno en la asignatura desde el comienzo del
    semestre participando en los trabajos propuestos y estudiando los conceptos
    desarrollados en las clases teóricas y prácticas.

     

    Profesores

    Nombre Apellido 1 Apellido 2 C.C.E. Coordinador
    PALOMA ROCÍO CUBILLAS FERNÁNDEZ PROFESOR AYUDANTE DOCTOR S
    Juan Antonio Viso Pérez Profesor Asociado N

     

    Competencias

    Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.

    Identificador Competencia Tipo
    CE01 Conocimientos de termodinámica aplicada y transmisión de calor. Principios básicos y su aplicación a la resolución de problemas de ingeniería ESPECÍFICA
    CG03 Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones. GENERAL
    CG07 Capacidad de analizar y valorar el impacto social y medioambiental de las soluciones técnicas GENERAL
    CT01 Comunicación oral y/o escrita TRANSVERSAL
    CT02 Trabajo autónomo TRANSVERSAL

     

    Resultados Aprendizaje

    Identificador Resultado
    R01 Saber aplicar los principios básicos de termodinámica a problemas de ingeniería y evaluar la interferencia con el medio ambiente
    R02 Saber aplicar los principios básicos de transmisión de calor a problemas de ingeniería y evaluar la interferencia con el medio ambiente

     

    Actividades formativas

    Actividad Detalle Horas Grupo Competencias a desarrollar
    01. Teoría
    Clases magistrales.
    
    Se empleará en paralelo la formación en software
    específico para facilitar la resolución de los
    ejercicios planteados, y poder ahondar en
    conceptos teóricos.
    
    40
    02. Prácticas, seminarios y problemas
    Planteamiento de las ecuaciones necesarias para
    resolver ejercicios prácticos
    10
    04. Prácticas de laboratorio
    Materializar algunos resultados obtenidos en los
    ejercicios prácticos en los equipos de laboratorio
    10
    10. Actividades formativas no presenciales
    Realización de problemas y trabajos propuestos.
    82
    12. Actividades de evaluación
    Examen final.
    4 Grande
    13. Otras actividades
    Exámenes parciales
    4 Grande

     

    Evaluación

    Criterios Generales de Evaluación

    El alumno debe demostrar haber asimilado los conceptos básicos para ser capaz de
    resolver problemas fundamentales de Termodinámica y de Transferencia de Calor.
    Para ello el alumno deberá obtener un mínimo de 5 puntos sobre un máximo de 10 en
    la calificación global. De ésta, un 70% corresponderá a exámenes, en cuya
    evaluación será tenida en cuenta la capacidad de planteamiento y resolución del
    problema, además de que el resultado correcto final sea obtenido. Además, en la
    evaluación del examen será imprescindible que el alumno haya obtenido una
    puntuación mínima de 3,5 puntos ambas partes en que se divide la evaluación de la
    asignatura (Termodinámica y Transferencia de Calor) para poder proceder a la
    media que aparecerá como resultado de la prueba escrita.

     

    Procedimiento de Evaluación

    Tarea/Actividades Medios, Técnicas e Instrumentos Evaluador/es Competencias a evaluar
    Examen teórico/práctico Resolución de problemas y preguntas teóricas encaminadas a evaluar los conocimientos adquiridos por el alumno a lo largo del semestre. Uno de los problemas propuestos será conveniente resolverlo usando como herramienta auxiliar el software EES.
    • Profesor/a
    Prácticas de laboratorio Trabajo en equipo. Uso de material de laboratorio. Memoria de resultados para evaluar la capacidad de síntesis de resultados y la obtención de conclusiones.
    • Profesor/a
    Realización de ejercicios y trabajos propuestos. Entrega de los ejercicios y trabajos resueltos.
    • Profesor/a

     

    Procedimiento de calificación

    La  adquisición  de  competencias  se  valorará  a  través  de  la evaluación
    continua. La  evaluación  continua  comprenderá  el  seguimiento  del  trabajo
    personal  del  alumno  por medio de los siguientes procedimientos:
    70%  Examen final o Exámenes a lo largo del desarrollo de la asignatura
    15%  Prácticas de laboratorio
    10%  Actividades Académicas Dirigidas
    5%  Participación y  trabajo  realizado en clases de teoría, de problemas y en
    las actividades de tutorización.
    

     

    Descripcion de los Contenidos

    Contenido Competencias relacionadas Resultados de aprendizaje relacionados
                1. Propiedades y estados de las sustancias puras.
    1.1. Sistemas y volúmenes de control
    1.2. Estado y equilibrio
    1.3. Procesos y ciclos
    1.4. Temperatura y Ley Cero de la Termodinámica
    1.5. Técnica para la resolución de problemas
    1.6. Fases de una sustancia pura
    1.7. Procesos de cambios de fase en sustancias puras
    1.8. Diagramas de propiedades para procesos de cambio de fase
    1.9. Tablas de propiedades
    1.10. Ecuación de estado de gas ideal
    1.11. Factor de compresibilidad
    
            
                2. Aplicaciones de los Principios de la Termodinámica.
    2.1. Primer Principio de la Termodinámica para Sistemas Cerrados.
    2.1.1.Balance de energía para sistemas cerrados.
    2.1.2. Calores específicos
    2.1.3. Energía interna, entalpía y calores específicos de gases ideales
    2.1.4. Energía interna, entalpía y calores específicos de sólidos y líquidos
    2.2. Primer Principio de la Termodinámica para Sistemas Abiertos: Volúmenes de Control
    2.2.1. Conservación de la masa
    2.2.2. Trabajo de flujo y energía de un fluido en movimiento
    2.2.3. Balance de energía en sistemas en estado estacionario
    2.2.4. Dispositivos de Ingeniería de flujo estable
    2.2.5. Balance de energía en sistemas en estado transitorio
    2.3. Segunda Ley de la Termodinámica
    2.3.1. Máquinas Térmicas
    2.3.2. Refrigeradores y Bombas de Calor
    2.3.3. Procesos reversibles e irreversibles
    2.3.4. El ciclo de Carnot y Principio de Carnot
    2.3.5. Escala Termodinámica de Temperatura
    2.3.6. Máquina Térmica de Carnot
    2.3.7. Refrigerador y Bomba de Calor de Carnot
    2.3.8. Entropía
    2.3.9. Principio de incremento de la entropía
    2.3.10. Cambio de entropía de sustancias puras
    2.3.11. Procesos isentrópicos
    2.3.12. Diagramas de propiedades que involucran a la entropía
    2.3.13. Relaciones T dS
    2.3.14. Cambio de entropía de líquidos y sólidos
    2.3.15. Cambio de entropía de gases ideales
    2.3.16. Balance de entropía
    2.3.17. Trabajo reversible en flujo estable
    2.3.18. Minimización trabajo compresor
    2.3.19. Eficiencias isentrópicas en dispositivos de flujo estable
    
    
    
    
    
            
                3. Mecanismos de Transferencia de Calor: Conducción, Convección y Radiación
    3.1. Conducción unidimensional en estado estable
    3.1.1. Analogía eléctrica
    3.1.2. La pared plana
    3.1.3. El cilindro
    3.1.4. Transferencia de calor en superficies extendidas
    3.2. Convección
    3.2.1. Capas límite de convección
    3.2.2. Flujo laminar y turbulento
    3.2.3. Significado físico de los parámetros adimensionales
    3.2.3. Correlaciones empíricas para:
    -Flujo externo
    -Flujo interno
    -Convección libre
    -Convección forzada
    3.3. Radiación
    3.3.1. Conceptos fundamentales
    3.3.2. Intensidad de radiación
    3.3.3. Radiación de cuerpo negro
    3.3.4. Emisión superficial
    3.3.5. Absorción, reflexión y transmisión superficiales
    3.3.6. Ley de Kirchhoff
    3.3.7. Superficie gris
    
            
                4. Aplicaciones combinadas de los mecanismos de Transferencia de calor
            
                5. Intercambiadores de Calor
    5.1. Tipos de intercambiadores de calor.
    5.2. Coeficiente Global de Transferencia de Calor.
    5.3. Análisis de intercambiadores: uso de la Diferencia de Temperatura Media Logarítmica.
    5.3.1. Intercambiadores de calor de flujo paralelo.
    5.3.2. Intercambiadores de calor en contraflujo.
    5.3.3. Condiciones especiales de operación.
    5.3.4. Intercambiadores de calor de pasos múltiples y de flujo cruzado.
    5.4. Análisis de intercamviadores: método eficiencia-NUT.
    5.4.1. Definiciones.
    5.4.2. Relaciones de eficiencia-NUT.
    5.5. Metodología del cálculo de intercambiadores de calor: Métodos Directos e Indirectos.
    
    
            

     

    Bibliografía

    Bibliografía Básica

    I.- TERMODINAMICA BASICA Y APLICADA:
    - MORAN, M.J.; SHAPIRO, H.N. Fundamentos de Termodinámica Técnica. E. Reverté, S.A.
    
    - ÇENGEL, YUNUS A. Michael A. Boles.  Termodinámica. McGraw-HillII.
    II.- TRANSFERENCIA DE CALOR:
    - ÇENGEL, YUNUS A. Michael A. Boles.  Transferencia de calor y masa. McGraw-HillII.
    - INCROPERA, F.P.; De WITT, D.P. Fundamentos de Transferencia de Calor y Masa. John Wiley & Sons.

     

    Bibliografía Específica

    I.- TERMODINAMICA BASICA Y APLICADA:
    - MATAIX C. Termodinámica Técnica y Máquinas Térmicas. Ediciones ICAI, 1978.
    - SEGURA J. Termodinámica Técnica. E. Reverté, 1988.
    - LACALLE, J.M. y otros. Problemas de Termodinámica. E.T.S.I.I. de Madrid. 1988.
    - J. AGÜERA SORIANO. Termodinámica Lógica y Motores Térmicos. (Ciencia 3, 1993).
    - WARK K. Termodinámica. McGraw-Hill, 1991.
    II.- TRANSFERENCIA DE CALOR: - HOLMAN, J.P. Transferencia de calor. CECSA, 1991.
    - CHAPMAN A.J. Transmisión de calor. (3ª Edición), Bellisco, 1990.

     





     

    El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente.