Fichas de asignaturas 2012-13
![]() |
AMPLIACIÓN DE MATEMÁTICAS |
|
Código | Nombre | |||
Asignatura | 40210004 | AMPLIACIÓN DE MATEMÁTICAS | Créditos Teóricos | 3.75 |
Título | 40210 | GRADO EN INGENIERÍA QUÍMICA | Créditos Prácticos | 3.75 |
Curso | 2 | Tipo | Troncal | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Conocimientos de Cálculo Diferencial e Integral en una y dos variables.
Recomendaciones
Es recomendable haber superado las asignaturas Cálculo y Álgebra y Geometría de primer curso.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
LORETO DEL | AGUILA | GARRIDO | Profesor Titular Escuela Univ. | S |
MARIA | ROSA | DURAN | PROFESOR SUSTITUTO INTERINO | N |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vacación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | BÁSICA |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | BÁSICA |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | BÁSICA |
CE2 | Resolver problemas matemáticos que puedan plantearse en la ingeniería | ESPECÍFICA |
CE3 | Aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización | ESPECÍFICA |
CG1 | Capacidad de análisis y síntesis | GENERAL |
CG4 | Capacidad para la gestión de datos y la generación de información /conocimiento | GENERAL |
CG5 | Capacidad para la resolución de problemas | GENERAL |
CG7 | Capacidad para trabajar en equipo | GENERAL |
CG8 | Capacidad de razonamiento crítico | GENERAL |
CT1 | Capacidad de organización y planificación | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R2 | Describir sistemas del ámbito de la ingeniería química en términos de ecuaciones diferenciales y determinar sus soluciones y saber interpretarlas. |
R1 | Utilizar los fundamentos matemáticos necesarios para poder entender y tratar de una manera rigurosa aquellos aspectos de la ingeniería que no son meramente conceptuales y que necesitan de herramientas matemáticas operativas. |
R3 | Utilizar los métodos numéricos para la resolución de problemas. Manejar los algoritmos básicos que permiten aplicar los métodos numéricos computacionalmente |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: clases Teóricas MÉTODO ENSEÑANZA-APRENDIZAJE: Método expositivo. Estudio de casos y problemas En ellas el profesor expone las competencias y objetivos a alcanzar, enseña los contenidos teóricos de un tema, y presenta problemas y casos particulares con la finalidad de afianzar los contenidos. Se realiza un seguimiento temporal de la adquisición de conocimientos a través de preguntas en clase.(Esta asignatura participa en un plan de actuaciones aprobado por la UCA para la incorporación de actividades en lengua inglesa en el Grado de Ingeniería Química, por lo que parte del material docente teórico y práctico se suministrará en inglés) |
30 | ||
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases Prácticas. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. En ellas se desarrollarán actividades de aplicación de los conocimientos a situaciones concretas que permiten profundizar y ampliar los conceptos expuestos en clases teóricas, con un especial énfasis en el aprendizaje. Los alumnos desarrollan las soluciones adecuadas, la aplicación de procedimientos y la interpretación de resultados. |
15 | ||
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de Informática. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas. Sesiones donde los estudiantes realizarán un conjunto de problemas utilizando las aplicaciones informáticas de un programa de cálculo simbólico y su posterior interpretación de los datos. |
15 | ||
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual/ autónomo. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Contrato de aprendizaje. Estas sesiones contemplan el trabajo realizado por el alumno para comprender los contenidos impartidos en teoría, la resolución de ejercicios y problemas, así como la realización de búsquedas bibliográficas. |
79 | ||
11. Actividades formativas de tutorías | MODADLIDAD ORGANIZATIVA: Tutorías y seminarios Sesiones dedicadas a orientar al alumno sobre cómo abordar la realización de ejercicios y problemas con el fin de asesorarlo sobre los distintos aspectos relativos al desarrollo de la asignatura |
5 | ||
12. Actividades de evaluación | Sesiones donde se realizará las diferentes pruebas de progreso periódicas. |
6 |
Evaluación
Criterios Generales de Evaluación
La calificación se obtiene a partir de las puntuaciones en cada actividad.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Pruebas de conocimientos básicos | Pruebas de conocimientos básicos |
|
|
Realizacion de Pruebas de Progreso | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura. |
|
|
Realización de una Prueba Final | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura. |
|
|
Trabajo de realización de las prácticas de informática. | Análisis documental/ Rúbrica de valoración de documentos. |
|
Procedimiento de calificación
Se evaluará tanto la realización de diversas actividades que se propondrán en el aula, las pruebas de progreso que se realizarán a lo largo del curso y la participación activa del alumno mediante la entrega de tareas. Supondrán un 15% de la calificación global de la asignatura las dos pruebas de progreso que se realizarán durante el curso. El trabajo de realización de las Prácticas de Informática tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado en clase y supondrá un 15% de la calificación global de la asignatura junto a la asistencia a dichas prácticas. Se realizará un examen final que supondrá un 70% de la calificación global de la asignatura. Se considerará que han conseguido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
01. Introducción a las ecuaciones diferenciales Definiciones y terminología. Interpretación geométrica. Algunos modelos de aplicación. |
R2 R1 | |
02. Ecuaciones diferenciales de primer orden. Condiciones básicas para existencia y unicidad de soluciones para el problema de valor inicial. Estudio y resolución de las ecuaciones con variables separables, homogéneas, exactas (factor integrante) y lineales. Aplicaciones: modelos de crecimiento y decrecimiento, enfriamiento, mezclas químicas, ecuación logística, reacciones químicas, etc. |
R1 R3 | |
03. Ecuaciones diferenciales de orden superior. Existencia de soluciones para los problemas de valor inicial y de valores de frontera. Resolución de las ecuaciones lineales con coeficientes constantes. Aplicaciones: modelo de movimiento vibratorio. |
R2 R1 R3 | |
04. Soluciones en serie de una ecuación diferencial. Introducción a las series de potencias. Funciones analíticas y desarrollos de Taylor. Puntos singulares y ordinarios de una ecuación. Método de la serie de Taylor. Resolución en serie de ecuaciones en puntos ordinarios: la ecuación de Cauchy-Euler. Existencia de solución en serie de potencias en puntos singulares regulares. |
R1 | |
05. Sistemas de ecuaciones diferenciales lineales. Condiciones básicas para la existencia y unicidad de soluciones para el problema de valor inicial. Expresión matricial de un sistema lineal. Resolución de Sistemas lineales. Introducción a los sistemas dinámicos. |
R2 R1 R3 | |
06. Métodos numéricos para resolver ecuaciones diferenciales ordinarias. Repaso de los métodos numéricos, Tipos de error, algoritmos, convergencia. Diferenciación e integración numérica. Métodos de Euler y Runge-Kutta. Métodos multipaso. Ecuaciones y problemas de ecuaciones de orden superior. Problemas de valores frontera |
R1 R3 | |
07. Introducción a las ecuaciones diferenciales en derivadas parciales lineales. Resolución por integración y por separación de variables. La ecuación de flujo de calor. La ecuación de ondas. La ecuación de Laplace. Aproximación numérica de las soluciones de ecuaciones en derivadas parciales. |
R2 R1 R3 |
Bibliografía
Bibliografía Básica
Dennis G. Zill. Ecuaciones diferenciales con aplicaciones de
modelado Grupo Editorial Iberoamérica.
Dennis G. Zill, M. R. Cullen. Ecuaciones diferenciales con
problemas de valores en la frontera. Thomson Learning
Iberoamericana (6ª edición), 2006.
Elementaryy differential equations and boundary value problems, John Wiley. Authors; William E. Bpyce and Richard C. DiPrima
An introduction to programming and numerical methods in Matlab. Otto S.R and Denier J.P. Springer.
Bibliografía Específica
M. López Rodríguez. Problemas resueltos de ecuaciones
diferenciales. Colección Paso a Paso. Thomson Paraninfo, 2007.
Peter V. O'Neil. Matemáticas avanzadas para la ingeniería. Volumen 1. 3ª edición.
Cecsa.
Cordero, J. L. Hueso, E. Martínez, J. R. Torregrosa.
Problemas resueltos de métodos numéricos. Colección Paso a Paso.
Thomson Paraninfo, 2006.
Bibliografía Ampliación
R.L. Burden, J.D. Faires. Análisis Numérico. Grupo editorial
Iberoaméricana, 1987.
John H. Mathews, Kurtis D. Fink. Métodos numéricos con Matlab. Prentice Hall
Hispanoamericana.
![]() |
CÁLCULO |
|
Código | Nombre | |||
Asignatura | 40210001 | CÁLCULO | Créditos Teóricos | 3.75 |
Título | 40210 | GRADO EN INGENIERÍA QUÍMICA | Créditos Prácticos | 3.75 |
Curso | 1 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Ninguno.
Recomendaciones
Se recomienda haber cursado la opción científico-técnica de bachillerato. También se recomienda tener un hábito de estudio continuado sobre la asignatura.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
JESUS | BEATO | SIRVENT | Profesor Asociado | S |
MARIA | ROSA | DURAN | PROFESOR SUSTITUTO INTERINO | N |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vacación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | BÁSICA |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | BÁSICA |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | BÁSICA |
CE2 | Resolver problemas matemáticos que puedan plantearse en la ingeniería | ESPECÍFICA |
CE3 | Aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización | ESPECÍFICA |
CG1 | Capacidad de análisis y síntesis | GENERAL |
CG4 | Capacidad para la gestión de datos y la generación de información /conocimiento | GENERAL |
CG5 | Capacidad para la resolución de problemas | GENERAL |
CG7 | Capacidad para trabajar en equipo | GENERAL |
CG8 | Capacidad de razonamiento crítico | GENERAL |
CT1 | Capacidad de organización y planificación | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R1 | Utilizar los fundamentos matemáticos necesarios para poder atender y tratar de una manera rigurosa aquellos aspectos de la ingeniería que no son meramente conceptuales y que necesitan de herramientas matemáticas operativas. |
R3 | Utilizar los métodos numéricos para la resolución de problemas. Manejar los algoritmos básicos que permiten aplicar los métodos numéricos computacionalmente. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | MODALIDAD ORGANIZATIVA: clases Teóricas MÉTODO ENSEÑANZA-APRENDIZAJE: Método expositivo. Estudio de casos En ellas el profesor expone las competencias y objetivos a alcanzar, enseña los contenidos teóricos de un tema, y presenta problemas y casos particulares con la finalidad de afianzar los contenidos. Se realiza un seguimiento temporal de la adquisición de conocimientos a través de preguntas en clase. |
30 | Grande | |
02. Prácticas, seminarios y problemas | MODALIDAD ORGANIZATIVA: Clases Prácticas. MÉTODOS DE ENSEÑANZA-APRENDIZAJE: Resolución de ejercicios. Aprendizaje basado en problemas. En ellas se desarrollarán actividades de aplicación de los conocimientos a situaciones concretas que permiten profundizar y ampliar los conceptos expuestos en clases teóricas, con un especial énfasis en el aprendizaje. Los alumnos desarrollan las soluciones adecuadas, la aplicación de procedimientos y la interpretación de resultados. |
15 | Mediano | |
03. Prácticas de informática | MODALIDAD ORGANIZATIVA: Prácticas de Informática. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Resolución de problemas. Sesiones donde los estudiantes realizarán un conjunto de problemas utilizando las aplicaciones informáticas de un programa de cálculo simbólico y su posterior interpretación de los datos. |
15 | Reducido | |
10. Actividades formativas no presenciales | MODALIDAD ORGANIZATIVA: Estudio y trabajo individual/ autónomo. MÉTODO DE ENSEÑANZA-APRENDIZAJE: Contrato de aprendizaje. Estas sesiones contemplan el trabajo realizado por el alumno para comprender los contenidos impartidos en teoría, la resolución de ejercicios y problemas, así como la realización de búsquedas bibliográficas. |
79 | Reducido | |
11. Actividades formativas de tutorías | MODADLIDAD ORGANIZATIVA: Tutorías y seminarios Sesiones dedicadas a orientar al alumno sobre cómo abordar la realización de ejercicios y problemas con el fin de asesorarlo sobre los distintos aspectos relativos al desarrollo de la asignatura. |
5 | Reducido | |
12. Actividades de evaluación | Sesiones donde se realizará las diferentes pruebas de progreso periódicas. |
6 | Grande |
Evaluación
Criterios Generales de Evaluación
La calificación se obtiene a partir de las puntuaciones en cada actividad.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Pruebas de conocimientos básicos. | Prueba objetiva de elección múltiple/ Análisis documental |
|
|
Realizacion de Pruebas de Progreso. | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura. |
|
|
Realización de una Prueba Final | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura. |
|
|
Trabajo de realización de las prácticas de informática. | Análisis documental/ Rúbrica de valoración de documentos. |
|
Procedimiento de calificación
Se evaluará tanto la realización de diversas actividades que se propondrán en el aula, las pruebas de progreso que se realizarán a lo largo del curso y la participación activa del alumno mediante la entrega de tareas. En las pruebas de progreso se valorará la adecuación, claridad, coherencia, justificación y precisión de las respuestas. Estas pruebas serán usualmente escritas. Supondrán un 80% de la calificación global de la asignatura. Las pruebas de conocimientos básicos supondrán un 10% de la calificación global de la asignatura y podrán ser propuestas y a realizar en el aula o a través del Campus Virtual. El trabajo de realización de las Prácticas de Informática tratará sobre diferentes ejercicios a resolver con el correspondiente software utilizado y supondrá un 10% de la calificación global de la asignatura. El alumno que no supere una, o más de una, de las pruebas de progreso anteriores, deberá realizar un Examen Final que se evaluará de la misma forma que las pruebas de progreso (suponiendo un 80% de la calificación final), siendo la Junta de Facultad quien establezca la fecha y el lugar de realización. Se considerará que han conseguido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
0. FUNCIONES DE UNA VARIABLE. Números reales y complejos. Definición de función. Concepto de continuidad y límite. Cálculo de límites. Concepto de derivada. Interpretación geométrica de la derivada. Cálculo de derivadas. Teoremas del valor medio. Regla de L`Hôpital. Derivación implícita. Función primitiva. Cálculo de primitivas. Problema del área de una regióny plana. Integral de Riemann. Propiedades de la integral de Riemann. Teorema del valor medio. Teorema fundamental del Cálculo y regla de Barrow. Aplicaciones de la integral. Integrales impropias. |
R1 R3 | |
1. SUCESIONES Y SERIES. Sucesiones reales. Límite de una sucesión. Conceptos de convergencia y divergencia. Series reales: de términos positivos, alternadas y de términos cualesquiera. Conceptos de convergencia y divergencia. Series geométricas y armónica simple. Criterios de convergencia. Series de potencias. Teorema de Taylor. Series de McLaurin y Taylor. |
R1 R3 | |
2. MÉTODOS NUMÉRICOS. Resolución numérica de ecuaciones. Interpolación polinómica. Aproximación de funciones. Diferenciación e integración numérica. |
R1 R3 | |
3. CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES. Introducción a funciones de varias variables. Superficies en el espacio. Continuidad y límites. Derivadas parciales. Diferenciabilidad. Regla de la cadena. Derivadas direccionales. Derivación implícita. Optimización de funciones de varias variables. Multiplicadores de Lagrange. |
R1 R3 | |
4. CÁLCULO INTEGRAL DE FUNCIONES DE VARIAS VARIABLES. Integrales iteradas. Integrales dobles y triples. Aplicaciones. Cambio de variables: coordenadas polares, cilíndricas y esféricas. |
R1 R3 |
Bibliografía
Bibliografía Básica
A. García, F. García, A. Gutiérrez, A. López, G. Rodríguez, A. de
la Villa. Cálculo I. Ed. Clagsa, 1998.
F. Martínez de la Rosa, C. Vinuesa Sánchez.
Matemáticas. Servicio de Publicaciones de la Universidad de Cádiz, 2003.
Análisis Numérico.
R.L. Burden, J. D. Faires.
International Thomson Editores, S.A., 2002.
Martínez, F. y Garrido, M.J. ``Matemáticas II". Servicio de Publicaciones.
U.C.A. 1998.
A. García, A. López, G. Rodríguez, S. Romero, A. de la Villa.
Cálculo II. Teoría y problemas de funciones de varias variables", Clagsa, 1996.
R. Larson, R. Hostetler, B. Edwards.
Cálculo. Ed. McGraw-Hill. Volúmenes I y II.
V. Tomeo, I. Uña, J. San Martín.
Problemas resueltos de Cálculo en una variable. Ed. Thomson Paraninfo, 2005.
Braulio de Diego. Ejercicios de Análisis. Cálculo Diferencial e Integral. Ed. Deimos.
Ayres-Mendelson. Cálculo diferencial e integral. Ed. McGraw-Hill.
F.Granero. Ejercicios y problemas de Cálculo, Tomos I y II. Ed. Tebar Flores.
A. J. Arriaza Gómez, J. M. Calero Posada, L. Del Águila Garrido, A. Fernández Valles, F. Rambla Barreno,
M. V. Redondo Neble, J. R. Rodríguez Galván.
Prácticas de Matemáticas con Maxima. Matemáticas usando Software Libre.
Bibliografía Ampliación
B. Demidovich. Problemas y ejercicios de análisis matemático. Ed. Mir o Ed. Paraninfo.
Anti-Demidovich (1, 2, 3 y 4). Matematnka.
D. Kincaid, W. Cheney. Análisis Numérico. Addison-Wesley Iberoamericana, Wilmington 1994.
F. Guillén González, A. Doubova Krasotchenko. Un Curso de Cálculo Numérico: Interpolación, Aproximación, Integración y Resolución de Problemas Diferenciales. Sevilla, España. Servicio de Publicaciones Universidad de Sevilla. 2007.
J. A. Sánchez Viña. E. Sánchez Mañes. Ejercicios y complementos de Análisis Matemático I. Tecnos.
![]() |
ÁLGEBRA Y GEOMETRÍA |
|
Código | Nombre | |||
Asignatura | 40210002 | ÁLGEBRA Y GEOMETRÍA | Créditos Teóricos | 3.75 |
Título | 40210 | GRADO EN INGENIERÍA QUÍMICA | Créditos Prácticos | 3.75 |
Curso | 1 | Tipo | Obligatoria | |
Créd. ECTS | 6 | |||
Departamento | C101 | MATEMATICAS |
Requisitos previos
Ninguno.
Recomendaciones
Saber manipular los conceptos incluidos en las matemáticas del bachillerato científico-tecnológico facilitará la comprensión de los contenidos de esta asignatura.
Profesores
Nombre | Apellido 1 | Apellido 2 | C.C.E. | Coordinador |
LORETO DEL | AGUILA | GARRIDO | Profesor Titular Escuela Univ. | S |
JESUS | BEATO | SIRVENT | Profesor Asociado | N |
Competencias
Se relacionan aquí las competencias de la Materia/módulo o título a que pertenece la asignatura, entre las que el profesor podrá indicar las relacionadas con la asignatura.
Identificador | Competencia | Tipo |
CB2 | Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vacación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio | BÁSICA |
CB3 | Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética | BÁSICA |
CB5 | Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía | BÁSICA |
CE2 | Resolver problemas matemáticos que puedan plantearse en la ingeniería | ESPECÍFICA |
CE3 | Aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización | ESPECÍFICA |
CG1 | Capacidad de análisis y síntesis | GENERAL |
CG4 | Capacidad para la gestión de datos y la generación de información /conocimiento | GENERAL |
CG5 | Capacidad para la resolución de problemas | GENERAL |
CG7 | Capacidad para trabajar en equipo | GENERAL |
CG8 | Capacidad de razonamiento crítico | GENERAL |
CT1 | Capacidad de organización y planificación | TRANSVERSAL |
Resultados Aprendizaje
Identificador | Resultado |
R1 | Utilizar los fundamentos matemáticos necesarios para poder entender y tratar de una manera rigurosa aquellos aspectos de la ingeniería que no son meramente conceptuales y que necesitan de herramientas matemáticas operativas. |
R3 | Utilizar los métodos numéricos para la resolución de problemas. Manejar los algoritmos básicos que permiten aplicar los métodos numéricos computacionalmente. |
Actividades formativas
Actividad | Detalle | Horas | Grupo | Competencias a desarrollar |
01. Teoría | Se enseñan los contenidos y se presentan problemas que ayuden a comprender las nociones introducidas. |
30 | Grande | |
02. Prácticas, seminarios y problemas | El profesor resuelve ejercicios y problemas sobre la materia estudiada y propone a los alumnos, por grupos, la resolución de otros. |
15 | Mediano | |
03. Prácticas de informática | Sesiones en las que los alumnos utilizarán una herramienta informática para realizar cálculos y representaciones gráficas. |
15 | Reducido | |
10. Actividades formativas no presenciales | Por grupos, los alumnos deberán realizar un trabajo de investigación dirigida por el profesor, sobre uno de los temas propuestos al principio del semestre, elaborar un ensayo y presentarlo telemáticamente al profesor. Los temas sobre los que versarán estos trabajos serán: historia del álgebra y la geometría, frisos y mosaicos. |
20 | Reducido | |
12. Actividades de evaluación | Realización de exámenes. |
10 | Grande | |
13. Otras actividades | Estudio personal -tanto individual como en grupo- de los contenidos de la asignatura. |
60 | Grande |
Evaluación
Criterios Generales de Evaluación
La calificación se obtiene a partir de las puntuaciones en cada actividad.
Procedimiento de Evaluación
Tarea/Actividades | Medios, Técnicas e Instrumentos | Evaluador/es | Competencias a evaluar |
Realización de pruebas de progreso. | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura. |
|
|
Realización de una prueba final. | Prueba escrita con ejercicios prácticos sobre los contenidos de la asignatura. |
|
|
Test o prueba de conocimientos básicos. | Prueba objetiva de elección múltiple (test)/ Análisis documental (prueba de conocimientos básicos). |
|
|
Trabajo de realización de las prácticas de informática. | Análisis documental/ Rúbrica de valoración de documentos. |
|
Procedimiento de calificación
Las pruebas de progreso supondrán un 70% de la calificación global de la asignatura y serán usualmente escritas. Los test o las pruebas de conocimientos básicos supondrán un 10% de la calificación global de la asignatura, y podrán ser propuestos y a realizar en el aula o a través del campus virtual. La realización de las prácticas de informática supondrá un 20% de la calificación global de la asignatura, y consistirá en la resolución de diferentes ejercicios con el correspondiente software, que supondrá un 10% de la calificación global de la asignatura (la nota obtenida en esta parte se conservará en las distintas convocatorias del curso correspondiente y, en caso de no superar la asignatura, en sucesivas convocatorias de los sucesivos cursos) y una prueba final de prácticas que supondrá un 10% de la calificación global de la asignatura (en caso de superar esta prueba, la nota se conservará sólo en las convocatorias del curso correspondiente). Se valorará positivamente la asistencia a clase. El alumno que no supere una o más de una de las pruebas de progreso deberá realizar un examen final que se valorará de la misma forma que las pruebas de progreso, y supondrá un 70% de la calificación global. El alumno que no supere la prueba de prácticas, realizará un examen final que supondrá un 10% de la calificación global. La Facultad establecerá la hora y el lugar de la realización de estos exámenes. Se considerará que han adquirido las competencias de la asignatura aquellos alumnos que obtengan 5 o más puntos entre todas las actividades evaluadas.
Descripcion de los Contenidos
Contenido | Competencias relacionadas | Resultados de aprendizaje relacionados |
01. MATRICES Y DETERMINANTES. Definición de matriz.- Operaciones lineales con matrices.- Producto de matrices.- Matriz traspuesta. Propiedades.- Tipos de matrices.- Matriz inversa. Unicidad y propiedades.- Operaciones elementales. Matrices elementales.- Matrices equivalentes.- Forma canónica de Hermite.- Método de Gauss-Jordan para el cálculo de la inversa de una matriz.- Rango de una matriz.- Cálculo del rango mediante operaciones elementales.- Definición y propiedades del determinante de una matriz cuadrada.- Aplicación de los determinantes. |
R1 R3 | |
02. SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES. Terminología y notaciones.- Sistemas equivalentes.- Método de eliminación de Gauss.- Teorema de Rouché-Fröbenius.- Sistemas homogéneos: Espacio nulo de una matriz.- Resolución de sistemas: métodos directos e iterativos. |
R1 R3 | |
03. Espacio vectorial R^n. Definición y propiedades. Dependencia e independencia lineal. Propiedades. Base y dimensión del espacio vectorial R^n. Coordenadas de un vector. Cambio de base en R^n. Subespacios vectoriales. Caracterización. Ecuaciones de un subespacio. Base y dimensión de un subespacio. |
R1 R3 | |
04. Espacio vectorial euclídeo R^n. Producto escalar. Módulo de un vector y ángulo entre vectores. Bases ortogonales y ortonormales. Método de ortonormalización de Gram-Schmidt. |
R1 | |
05. Diagonalización de matrices. Autovalores y autovectores de una matriz cuadrada. Propiedades. Matriz diagonalizable. Diagonalización. Diagonalización de matrices simétricas por semejanza ortogonal. Potencias de una matriz diagonalizable. Forma canónica de Jordan para matrices de orden dos y tres. |
R1 R3 | |
06. Cónicas. Definición de cónica. Ecuación matricial. Ecuación reducida de una cónica. Clasificación y elementos principales de las cónicas. Es1tudio de las cónicas ordinarias. |
R1 | |
07. Cuádricas. Definición de cuádrica. Ecuación matricial. Ecuación reducida de una cuádrica. Clasificación de las cuádricas. Estudio de las cuádricas ordinarias. |
R1 | |
08. Curvas planas. Concepto de curva plana. Expresiones de una curva: paramétrica, explícita e implícita. Tangente y normal en un punto de una curva. Puntos singulares y puntos ordinarios. Curvas planas en coordenadas polares. |
R1 R3 | |
09. Curvas alabeadas. Definición de curva en el espacio. Ecuaciones de una curva. Punto ordinario y punto singular. Longitud de un arco de curva. Triedro y fórmulas de Frenet. Recta tangente, normal y binormal. Curvatura y torsión. Plasnos osculador, normal y rectificante. |
R1 R3 | |
10. Superficies. Concepto de superficie. Plano tangente y recta normal a una superficie. Superficies de revolución y de traslación. Superficies cónicas y cilíndricas. |
R1 |
Bibliografía
Bibliografía Básica
Merino, L., Santos, E. (2006): Álgebra Lineal con métodos elementales. Thomson Paraninfo.
de Burgos, J. (2006): Álgebra Lineal y Geometría Cartesiana. McGraw-Hill.
Grossman, S. (2007): Álgebra Lineal con aplicaciones. McGraw-Hill.
de la Villa, A. (1998): Problemas de Álgebra con esquemas teóricos. Clagsa.
López, A., de la Villa, A. (1997): Geometría Diferencial. Clagsa.
Costa, A., Gamboa, M., Porto, A. (2005): Notas de Geometría Diferencial de Curvas y Superficies. Sanz y Torres.
Costa, A., Gamboa, M., Porto, A. (2005): Ejercicios de Geometría Diferencial de Curvas y Superficies. Sanz y Torres.
Ariza, O., Camacho, J. C., Sánchez, A.: Álgebra Lineal y Geometría en Escuelas Técnicas. Editan los autores.
de Burgos, J.: Curso de Álgebra y Geometría. Alambra-Longman.
de Diego, B., Gordillo, E., Valeiras, G.: Problemas de Álgebra Lineal. Deimos.
Raya, A., Rider, A., Rubio, R.: Álgebra y Geometría lineal. Reverté.
Bibliografía Ampliación
Castellet, M., Llerena, I. (1994): Álgebra Lineal y Geometría. Reverté.
Rojo, J., Martín, I. (1994): Ejercicios y problemas de Álgebra Lineal. McGraw-Hill.
Arvesú, J., Marcellán, F., Sánchez, J. (2007): Problemas Resueltos de Álgebra Lineal. Paraninfo.
Cordero, L., Fernández, M., Gray, A. (1995): Geometría Diferencial de Curvas y Superficies. Addison-Wesley.
García, J. L. (2005): Test de Álgebra Lineal. AC.
Bolos, V. (2007): Álgebra Lineal y Geometría. Universidad de Extremadura.
Sanz, P., Vázquez, F. J., Ortega, P.: Álgebra lineal. Cuestiones, ejercicios y tratamiento en DERIVE. Prentice Hall.
El presente documento es propiedad de la Universidad de Cádiz y forma parte de su Sistema de Gestión de Calidad Docente.